Uploaded model
- Developed by: tiwanari
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
jsonlファイルの出力方法
学習には LLMのための日本語インストラクションデータ 公開ページのデータを活用。
- ichikara-instruction-003-001-1.json を利用
unslothを用いて、llm-jp/llm-jp-3-13bを4bit量子化のqLoRA設定でモデルを構築。ハイパーパラメータは下記のように設定。
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_id,
dtype=None,
load_in_4bit=True,
trust_remote_code=True,
)
model = FastLanguageModel.get_peft_model(
model,
r = 32,
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 32,
lora_dropout = 0.05,
bias = "none",
use_gradient_checkpointing = "unsloth",
random_state = 3407,
use_rslora = False,
loftq_config = None,
max_seq_length = 512,
)
- 訓練は以下のように設定した trl の Trainer によって行った。
trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset=dataset["train"],
max_seq_length = 512,
dataset_text_field="formatted_text",
packing = False,
args = TrainingArguments(
per_device_train_batch_size = 2,
gradient_accumulation_steps = 4,
num_train_epochs = 1,
logging_steps = 10,
warmup_steps = 10,
save_steps=100,
save_total_limit=2,
max_steps=-1,
learning_rate = 2e-4,
fp16 = not is_bfloat16_supported(),
bf16 = is_bfloat16_supported(),
group_by_length=True,
seed = 3407,
output_dir = "outputs",
report_to = "none",
),
)
- 上記を Hagging Face (このリポジトリ) にアップロード。
- 推論時には、このLoRAのアダプタをモデルに結合することで再現
model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "tiwanari/llm-jp-3-13b-it_lora"
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_id,
dtype=None,
load_in_4bit=True,
trust_remote_code=True,
)
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
- 結果はテストデータを用いて各行でのチェックを行って作成
datasets = []
with open("/content/elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
FastLanguageModel.for_inference(model)
results = []
for dt in tqdm(datasets):
input = dt["input"]
prompt = f"""### 指示\n{input}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
# 吐き出し
json_file_id = re.sub(".*/", "", adapter_id)
with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for tiwanari/llm-jp-3-13b-it_lora
Base model
llm-jp/llm-jp-3-13b