tjasad's picture
tjasad/prompt_fine_tuned_boolq_bert
5be9c70 verified
|
raw
history blame
1.81 kB
metadata
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: prompt_fine_tuned_boolq_bert
    results: []

prompt_fine_tuned_boolq_bert

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6468
  • Accuracy: 0.7778
  • F1: 0.7481

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 12 0.6797 0.6667 0.6872
No log 2.0 24 0.6667 0.6667 0.6667
No log 3.0 36 0.6563 0.6667 0.6667
No log 4.0 48 0.6507 0.7222 0.7072
No log 5.0 60 0.6478 0.7222 0.7072
No log 6.0 72 0.6468 0.7778 0.7481

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1