tmnam20's picture
Upload README.md with huggingface_hub
5a04b0b verified
---
language:
- en
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
- generated_from_trainer
datasets:
- tmnam20/VieGLUE
metrics:
- matthews_correlation
model-index:
- name: bert-base-multilingual-cased-cola-1
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tmnam20/VieGLUE/COLA
type: tmnam20/VieGLUE
config: cola
split: validation
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.10933539185089611
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-multilingual-cased-cola-1
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/COLA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6256
- Matthews Correlation: 0.1093
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 1
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.6099 | 1.87 | 500 | 0.6055 | 0.0 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.2.0.dev20231203+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0