tmnam20's picture
Upload README.md with huggingface_hub
6de41b2 verified
|
raw
history blame
2.17 kB
---
language:
- en
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
- generated_from_trainer
datasets:
- tmnam20/VieGLUE
metrics:
- accuracy
model-index:
- name: bert-base-multilingual-cased-mnli-10
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tmnam20/VieGLUE/MNLI
type: tmnam20/VieGLUE
config: mnli
split: validation_matched
args: mnli
metrics:
- name: Accuracy
type: accuracy
value: 0.7999389747762409
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-multilingual-cased-mnli-10
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/MNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5432
- Accuracy: 0.7999
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 10
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.6369 | 0.41 | 5000 | 0.6399 | 0.7401 |
| 0.5945 | 0.81 | 10000 | 0.5746 | 0.7680 |
| 0.4847 | 1.22 | 15000 | 0.5817 | 0.7773 |
| 0.5109 | 1.63 | 20000 | 0.5680 | 0.7790 |
| 0.3754 | 2.04 | 25000 | 0.5796 | 0.7890 |
| 0.3989 | 2.44 | 30000 | 0.5581 | 0.7892 |
| 0.4013 | 2.85 | 35000 | 0.5501 | 0.7955 |
### Framework versions
- Transformers 4.36.0
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0