tmnam20's picture
Upload README.md with huggingface_hub
a2d6cc3 verified
---
language:
- en
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
- generated_from_trainer
datasets:
- tmnam20/VieGLUE
metrics:
- accuracy
- f1
model-index:
- name: mdeberta-v3-base-mrpc-10
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tmnam20/VieGLUE/MRPC
type: tmnam20/VieGLUE
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8504901960784313
- name: F1
type: f1
value: 0.893169877408056
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mdeberta-v3-base-mrpc-10
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3609
- Accuracy: 0.8505
- F1: 0.8932
- Combined Score: 0.8718
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 10
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.35.2
- Pytorch 2.2.0.dev20231203+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0