tmnam20's picture
Upload README.md with huggingface_hub
d278f14 verified
|
raw
history blame
2.38 kB
---
language:
- en
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
- generated_from_trainer
datasets:
- tmnam20/VieGLUE
metrics:
- accuracy
- f1
model-index:
- name: mdeberta-v3-base-qqp-1
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tmnam20/VieGLUE/QQP
type: tmnam20/VieGLUE
config: qqp
split: validation
args: qqp
metrics:
- name: Accuracy
type: accuracy
value: 0.8996784565916399
- name: F1
type: f1
value: 0.865810891285648
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mdeberta-v3-base-qqp-1
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/QQP dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2774
- Accuracy: 0.8997
- F1: 0.8658
- Combined Score: 0.8827
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 1
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:|
| 0.2888 | 0.44 | 5000 | 0.2928 | 0.8740 | 0.8314 | 0.8527 |
| 0.2968 | 0.88 | 10000 | 0.2770 | 0.8793 | 0.8325 | 0.8559 |
| 0.2365 | 1.32 | 15000 | 0.2894 | 0.8871 | 0.8507 | 0.8689 |
| 0.2257 | 1.76 | 20000 | 0.2664 | 0.8941 | 0.8572 | 0.8757 |
| 0.1939 | 2.2 | 25000 | 0.2777 | 0.8970 | 0.8617 | 0.8793 |
| 0.2001 | 2.64 | 30000 | 0.2762 | 0.8987 | 0.8643 | 0.8815 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.2.0.dev20231203+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0