|
--- |
|
language: |
|
- en |
|
license: mit |
|
base_model: microsoft/mdeberta-v3-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- tmnam20/VieGLUE |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: mdeberta-v3-base-sst2-1 |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: tmnam20/VieGLUE/SST2 |
|
type: tmnam20/VieGLUE |
|
config: sst2 |
|
split: validation |
|
args: sst2 |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8922018348623854 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mdeberta-v3-base-sst2-1 |
|
|
|
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/SST2 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3789 |
|
- Accuracy: 0.8922 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 1 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.3138 | 0.24 | 500 | 0.3016 | 0.8761 | |
|
| 0.2693 | 0.48 | 1000 | 0.3624 | 0.8911 | |
|
| 0.2359 | 0.71 | 1500 | 0.3470 | 0.8739 | |
|
| 0.2584 | 0.95 | 2000 | 0.2878 | 0.8911 | |
|
| 0.1774 | 1.19 | 2500 | 0.3204 | 0.9048 | |
|
| 0.1921 | 1.43 | 3000 | 0.3878 | 0.8899 | |
|
| 0.1822 | 1.66 | 3500 | 0.3444 | 0.9002 | |
|
| 0.1772 | 1.9 | 4000 | 0.3351 | 0.8968 | |
|
| 0.1368 | 2.14 | 4500 | 0.3350 | 0.9060 | |
|
| 0.1259 | 2.38 | 5000 | 0.3967 | 0.8968 | |
|
| 0.107 | 2.61 | 5500 | 0.3937 | 0.8945 | |
|
| 0.1371 | 2.85 | 6000 | 0.3743 | 0.8968 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|