File size: 23,544 Bytes
93683ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:MSELoss
base_model: nreimers/TinyBERT_L-4_H-312_v2
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- negative_mse
widget:
- source_sentence: A woman at home.
  sentences:
  - The woman is inside.
  - The woman is performing for an audience.
  - The two men are freinds
- source_sentence: boys play football
  sentences:
  - Rival college football players are playing a football game.
  - A man looks at his watch at a bus stop.
  - A woman walking on an old bridge near a mountain.
- source_sentence: Nobody has a pot
  sentences:
  - Nobody has a suit
  - A woman riding a bicycle on the street.
  - The front is decorated with Ethiopian themes and motifs.
- source_sentence: A dog plays ball.
  sentences:
  - A dog with a ball.
  - A man looking into a microscope in a lab
  - Children go past their parents.
- source_sentence: A person standing
  sentences:
  - There is a person standing outside
  - A young man plays a racing video game.
  - Two children playing on the floor with toy trains.
pipeline_tag: sentence-similarity
co2_eq_emissions:
  emissions: 3.457859864142588
  energy_consumed: 0.00889591477312334
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.054
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev
      type: sts-dev
    metrics:
    - type: pearson_cosine
      value: 0.8077673131159315
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8208863013753134
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8225516575982812
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8203236078973807
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8215663439432439
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8202318953605339
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7901487535994149
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7914362691291718
      name: Spearman Dot
    - type: pearson_max
      value: 0.8225516575982812
      name: Pearson Max
    - type: spearman_max
      value: 0.8208863013753134
      name: Spearman Max
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: negative_mse
      value: -50.125449895858765
      name: Negative Mse
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.7516961775809978
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7558402072520215
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7762734499549059
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.75965556867712
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7705568379382428
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7553604477247078
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7306801501272192
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7097993872384684
      name: Spearman Dot
    - type: pearson_max
      value: 0.7762734499549059
      name: Pearson Max
    - type: spearman_max
      value: 0.75965556867712
      name: Spearman Max
---

# SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2) on the [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) dataset. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2) <!-- at revision d782507ee95c6565fe5924fcd6090999055e8db6 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 312 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/TinyBERT_L-4_H-312_v2-distilled-from-stsb-roberta-base-v2")
# Run inference
sentences = [
    'A person standing',
    'There is a person standing outside',
    'A young man plays a racing video game.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8078     |
| **spearman_cosine** | **0.8209** |
| pearson_manhattan   | 0.8226     |
| spearman_manhattan  | 0.8203     |
| pearson_euclidean   | 0.8216     |
| spearman_euclidean  | 0.8202     |
| pearson_dot         | 0.7901     |
| spearman_dot        | 0.7914     |
| pearson_max         | 0.8226     |
| spearman_max        | 0.8209     |

#### Knowledge Distillation

* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)

| Metric           | Value        |
|:-----------------|:-------------|
| **negative_mse** | **-50.1254** |

#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.7517     |
| **spearman_cosine** | **0.7558** |
| pearson_manhattan   | 0.7763     |
| spearman_manhattan  | 0.7597     |
| pearson_euclidean   | 0.7706     |
| spearman_euclidean  | 0.7554     |
| pearson_dot         | 0.7307     |
| spearman_dot        | 0.7098     |
| pearson_max         | 0.7763     |
| spearman_max        | 0.7597     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### sentence-transformers/wikipedia-en-sentences

* Dataset: [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) at [4a0972d](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences/tree/4a0972dcb781b5b5d27799798f032606421dd422)
* Size: 200,000 training samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence                                                                          | label                                |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
  | type    | string                                                                            | list                                 |
  | details | <ul><li>min: 4 tokens</li><li>mean: 12.24 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>size: 312 elements</li></ul> |
* Samples:
  | sentence                                                                   | label                                                                                                                    |
  |:---------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------|
  | <code>A person on a horse jumps over a broken down airplane.</code>        | <code>[-0.09614687412977219, 0.6815224885940552, 2.702199935913086, 1.8371250629425049, -1.2949433326721191, ...]</code> |
  | <code>Children smiling and waving at camera</code>                         | <code>[2.769360303878784, 3.074428081512451, -7.291755676269531, 5.248741149902344, 2.85081148147583, ...]</code>        |
  | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>[-3.0669667720794678, 2.9899890422821045, -1.253997802734375, 6.15218448638916, 0.5838223099708557, ...]</code>    |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)

### Evaluation Dataset

#### sentence-transformers/wikipedia-en-sentences

* Dataset: [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) at [4a0972d](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences/tree/4a0972dcb781b5b5d27799798f032606421dd422)
* Size: 10,000 evaluation samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence                                                                          | label                                |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
  | type    | string                                                                            | list                                 |
  | details | <ul><li>min: 5 tokens</li><li>mean: 13.23 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>size: 312 elements</li></ul> |
* Samples:
  | sentence                                                                                                                                                                       | label                                                                                                                    |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------|
  | <code>Two women are embracing while holding to go packages.</code>                                                                                                             | <code>[6.200135707855225, -2.0865142345428467, -2.1313390731811523, -1.9593913555145264, -1.081985592842102, ...]</code> |
  | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>[1.7725015878677368, 0.6873414516448975, -2.5191268920898438, 3.866339683532715, 2.853647470474243, ...]</code>    |
  | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code>                                                                    | <code>[-3.317653179168701, 3.0908589363098145, 0.1683920919895172, -2.4405274391174316, -3.1366524696350098, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 0.0001
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: False
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 0.0001
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: None
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch    | Step     | Training Loss | loss       | negative_mse | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|:--------:|:--------:|:-------------:|:----------:|:------------:|:-----------------------:|:------------------------:|
| 0.032    | 100      | 0.8847        | -          | -            | -                       | -                        |
| 0.064    | 200      | 0.8136        | -          | -            | -                       | -                        |
| 0.096    | 300      | 0.697         | -          | -            | -                       | -                        |
| 0.128    | 400      | 0.6128        | -          | -            | -                       | -                        |
| 0.16     | 500      | 0.5634        | 0.6324     | -63.2356     | 0.7564                  | -                        |
| 0.192    | 600      | 0.5294        | -          | -            | -                       | -                        |
| 0.224    | 700      | 0.5035        | -          | -            | -                       | -                        |
| 0.256    | 800      | 0.4861        | -          | -            | -                       | -                        |
| 0.288    | 900      | 0.4668        | -          | -            | -                       | -                        |
| 0.32     | 1000     | 0.4515        | 0.5673     | -56.7263     | 0.7965                  | -                        |
| 0.352    | 1100     | 0.4376        | -          | -            | -                       | -                        |
| 0.384    | 1200     | 0.4274        | -          | -            | -                       | -                        |
| 0.416    | 1300     | 0.4178        | -          | -            | -                       | -                        |
| 0.448    | 1400     | 0.4098        | -          | -            | -                       | -                        |
| 0.48     | 1500     | 0.4053        | 0.5354     | -53.5381     | 0.8091                  | -                        |
| 0.512    | 1600     | 0.3934        | -          | -            | -                       | -                        |
| 0.544    | 1700     | 0.391         | -          | -            | -                       | -                        |
| 0.576    | 1800     | 0.3848        | -          | -            | -                       | -                        |
| 0.608    | 1900     | 0.3785        | -          | -            | -                       | -                        |
| 0.64     | 2000     | 0.3737        | 0.5168     | -51.6829     | 0.8159                  | -                        |
| 0.672    | 2100     | 0.3716        | -          | -            | -                       | -                        |
| 0.704    | 2200     | 0.3695        | -          | -            | -                       | -                        |
| 0.736    | 2300     | 0.3666        | -          | -            | -                       | -                        |
| 0.768    | 2400     | 0.3616        | -          | -            | -                       | -                        |
| 0.8      | 2500     | 0.358         | 0.5067     | -50.6687     | 0.8189                  | -                        |
| 0.832    | 2600     | 0.3551        | -          | -            | -                       | -                        |
| 0.864    | 2700     | 0.3544        | -          | -            | -                       | -                        |
| 0.896    | 2800     | 0.3524        | -          | -            | -                       | -                        |
| 0.928    | 2900     | 0.3524        | -          | -            | -                       | -                        |
| **0.96** | **3000** | **0.3529**    | **0.5013** | **-50.1254** | **0.8209**              | **-**                    |
| 0.992    | 3100     | 0.3496        | -          | -            | -                       | -                        |
| 1.0      | 3125     | -             | -          | -            | -                       | 0.7558                   |

* The bold row denotes the saved checkpoint.

### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.009 kWh
- **Carbon Emitted**: 0.003 kg of CO2
- **Hours Used**: 0.054 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MSELoss
```bibtex
@inproceedings{reimers-2020-multilingual-sentence-bert,
    title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2004.09813",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->