Phi-2-Text-Embedding-cft

Description

This is a fine-tuned version of Phi-2 to perform Text Embedding tasks. The model is fine-tuned using the Contrastive Fine-tuning and LoRA technique on NLI datasets. The paper can be found here.

Base Model

Phi-2

Usage

  1. Clone Phi-2 repository
git clone https://huggingface.co/microsoft/phi-2
  1. Change a tokenizer setting in tokenizer_config.json
"add_eos_token": true
  1. Use the model
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import numpy as np

class PhiSentenceEmbedding:
    def __init__(self, model_path='microsoft/phi-2', adapter_path=None):
        self.tokenizer = AutoTokenizer.from_pretrained(model_path)
        self.model = AutoModelForCausalLM.from_pretrained(model_path, 
                                                          torch_dtype=torch.bfloat16,
                                                          device_map='cuda',
                                                          trust_remote_code=True)
        if adapter_path != None:
            # Load fine-tuned LoRA
            self.model.load_adapter(adapter_path)

    def get_last_hidden_state(self, text):
        inputs = self.tokenizer(text, return_tensors="pt").to('cuda')
        with torch.no_grad():
            out = self.model(**inputs, output_hidden_states=True).hidden_states[-1][0, -1, :]
        return out.squeeze().float().cpu().numpy()

    def encode(self, sentences: list[str], **kwargs) -> list[np.ndarray]:
        """
        Returns a list of embeddings for the given sentences.
        
        Args:
            sentences: List of sentences to encode

        Returns:
            List of embeddings for the given sentences
        """

        out = []

        for s in sentences:
            out.append(self.get_last_hidden_state(s))

        return out

phi_sentence_embedding = PhiSentenceEmbedding(<your-cloned-base-model-path>, 'trapoom555/Phi-2-Text-Embedding-cft')

example_sentences = ["I don't like apples", "I like apples"]

encoded_sentences = phi_sentence_embedding.encode(example_sentences)

print(encoded_sentences) 

Training Details

Training Details Value
Loss InfoNCE
Batch Size 60
InfoNCE Temperature 0.05
Learning Rate 5e-05
Warmup Steps 100
Learning Rate Scheduler CosineAnnealingLR
LoRA Rank 8
LoRA Alpha 32
LoRA Dropout 0.1
Training Precision bf16
Max Epoch 1
GPU RTX3090
Num GPUs 4

Training Scripts

The training script for this model is written in this Github repository.

Checkpoints

We provide checkpoints every 500 training steps which can be found here.

Evaluation Results

Benchmarks Before cft After cft
STS12 23.04 61.62
STS13 20.79 71.87
STS14 17.06 60.46
STS15 24.56 71.18
STS16 48.68 74.77
STS17 41.43 80.20
STSBenchmark 37.87 79.46
BOISSES 28.04 64.06
SICK-R 48.40 74.37
Overall 32.21 70.89

Contributors

Trapoom Ukarapol, Zhicheng Lee, Amy Xin

Foot Notes

This work is the final project of the Natural Language Processing Spring 2024 course at Tsinghua University 🟣. We would like to express our sincere gratitude to this course !

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Inference API (serverless) does not yet support transformers models for this pipeline type.

Collection including trapoom555/Phi-2-Text-Embedding-cft