VP_ViSoBERT_syl_ViWikiFC

This model is a fine-tuned version of tringuyen-uit/VP_ViSoBERT_syl_ViWikiFC on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1555
  • Accuracy: 0.6445

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6994 0.05 100 0.9688 0.6158
0.6904 0.1 200 0.9753 0.6014
0.7969 0.14 300 0.9446 0.5871
0.6801 0.19 400 0.9912 0.6057
0.7089 0.24 500 0.9617 0.5861
0.6627 0.29 600 1.0585 0.5689
0.6792 0.33 700 1.0064 0.6230
0.6702 0.38 800 1.0593 0.5818
0.6252 0.43 900 0.9621 0.5967
0.6262 0.48 1000 1.0152 0.5957
0.6515 0.53 1100 0.9539 0.6225
0.6596 0.57 1200 0.9188 0.6067
0.6458 0.62 1300 0.9318 0.6201
0.6087 0.67 1400 0.9532 0.6172
0.6282 0.72 1500 1.0107 0.6244
0.6266 0.76 1600 1.0199 0.6096
0.6165 0.81 1700 1.0973 0.6096
0.5869 0.86 1800 0.9177 0.6325
0.596 0.91 1900 0.8821 0.6364
0.6073 0.96 2000 0.9350 0.6306
0.5921 1.0 2100 0.9606 0.6282
0.4551 1.05 2200 1.0386 0.6373
0.3922 1.1 2300 1.1936 0.6368
0.39 1.15 2400 1.1922 0.6316
0.442 1.19 2500 1.1599 0.6220
0.4092 1.24 2600 1.3106 0.6196
0.4582 1.29 2700 1.1817 0.6316
0.4356 1.34 2800 1.1257 0.6316
0.4145 1.39 2900 1.1899 0.6354
0.4379 1.43 3000 1.1385 0.6388
0.4222 1.48 3100 1.1844 0.6249
0.3758 1.53 3200 1.2444 0.6311
0.4114 1.58 3300 1.1908 0.6349
0.4449 1.62 3400 1.1483 0.6273
0.4046 1.67 3500 1.1977 0.6306
0.4274 1.72 3600 1.1520 0.6450
0.3785 1.77 3700 1.1665 0.6330
0.3854 1.82 3800 1.1680 0.6474
0.3562 1.86 3900 1.1616 0.6459
0.3938 1.91 4000 1.1823 0.6397
0.5083 1.96 4100 1.1555 0.6445

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
113
Safetensors
Model size
97.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tringuyen-uit/VP_ViSoBERT_syl_ViWikiFC

Unable to build the model tree, the base model loops to the model itself. Learn more.