trollek's picture
Update README.md
4f846cf verified
|
raw
history blame
2.55 kB
metadata
license: apache-2.0
base_model: h2oai/h2o-danube2-1.8b-base
datasets:
  - ajibawa-2023/Code-290k-ShareGPT
language:
  - en
library_name: transformers
tags:
  - llama-factory
  - unsloth

h2o-danube2 with ChatML template

This model was first fine-tuned with BAdam on ajibawa-2023/Code-290k-ShareGPT using LLama-Factory.

Template

<|im_start|>system
You are a helpful coding assistant.<|im_end|>
<|im_start|>user
{{instruction}}<|im_end|>
<|im_start|>assistant
{{response}}<|im_end|>

BAdam config

### model
model_name_or_path: danube2-base-chatml

### method
stage: sft
do_train: true
finetuning_type: full
use_badam: true
badam_switch_mode: ascending
badam_switch_interval: 50
badam_verbose: 1
badam_start_block: 8
seed: 8

### dataset
dataset: code_290k
template: hermes_chatml
cutoff_len: 8192
overwrite_cache: false
preprocessing_num_workers: 12

### output
output_dir: code-290k-chatml-badam
logging_steps: 5
save_steps: 1
save_strategy: epoch
plot_loss: true
overwrite_output_dir: false

### train
per_device_train_batch_size: 2
gradient_accumulation_steps: 8
learning_rate: 0.00001
num_train_epochs: 1
lr_scheduler_type: constant_with_warmup
warmup_ratio: 0.01
bf16: true
flash_attn: fa2

### eval
val_size: 0.01
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 1000

BAdam training results

Training Loss Epoch Step Validation Loss
0.7404 0.0559 1000 0.7784
0.7858 0.1118 2000 0.7702
0.7274 0.1677 3000 0.7604
0.6956 0.2236 4000 0.7570
0.7711 0.2795 5000 0.7541
0.7643 0.3354 6000 0.7518
0.8255 0.3913 7000 0.7496
0.7456 0.4472 8000 0.7483
0.7718 0.5031 9000 0.7447
0.6693 0.5590 10000 0.7445
0.7409 0.6149 11000 0.7433
0.7319 0.6709 12000 0.7424
0.7636 0.7268 13000 0.7415
0.7504 0.7827 14000 0.7414
0.7735 0.8386 15000 0.7374
0.7438 0.8945 16000 0.7375
0.839 0.9504 17000 0.7373