Merge-A-MoE/Model
Collection
A collection of danube2 models to mix and merge together.
•
13 items
•
Updated
•
2
This is a BAdam fine-tuned danube2 base model. It uses the ChatML template and was trained on the glaive-function-calling-v2 dataset from GlaiveAI that has been converted to ShareGPT by hiyouga of LLama-Factory fame.
<|im_start|>system
{{system}}
<tools>
{{json_format_tools}}
</tools><|im_end|>
<|im_start|>user
{{instruction}}<|im_end|>
<|im_start|>assistant
<tool_call>
{{tool_call}}
</tool_call><|im_end|>
<|im_start|>tool
<tool_response>
{{response}}
</tool_response><|im_end|>
_register_template(
name="hermes_chatml",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_function=FunctionFormatter(slots=["<tool_call>\n{\"name\":\"{{name}}\", \"arguments\":{{arguments}}}\n</tool_call><|im_end|>\n"]),
format_observation=StringFormatter(slots=["<|im_start|>tool\n<tool_response>\n{{content}}\n</tool_response><|im_end|>\n<|im_start|>assistant\n"]),
format_tools=ToolFormatter(tool_format="chatml"),
stop_words=["<|im_end|>"],
)
### model
model_name_or_path: danube2-base-chatml
### method
stage: sft
do_train: true
finetuning_type: full
use_badam: true
badam_switch_mode: ascending
badam_switch_interval: 50
badam_verbose: 1
badam_start_block: 5
seed: 404
### dataset
dataset: glaive_toolcall_100k
template: hermes_chatml
cutoff_len: 8192
overwrite_cache: false
preprocessing_num_workers: 12
### output
output_dir: glaive-tool-chatml-badam
logging_steps: 5
save_steps: 1
save_strategy: epoch
plot_loss: true
overwrite_output_dir: false
### train
per_device_train_batch_size: 2
gradient_accumulation_steps: 8
learning_rate: 0.000005
num_train_epochs: 1
lr_scheduler_type: cosine
warmup_ratio: 0.01
pure_bf16: true
flash_attn: fa2
### eval
val_size: 0.01
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 1000
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.3914 | 0.1607 | 1000 | 0.2984 |
0.3256 | 0.3214 | 2000 | 0.2819 |
0.4131 | 0.4821 | 3000 | 0.2765 |
0.3922 | 0.6428 | 4000 | 0.2736 |
0.3528 | 0.8036 | 5000 | 0.2724 |
0.3477 | 0.9643 | 6000 | 0.2724 |
Base model
h2oai/h2o-danube2-1.8b-base