FLUX.1-dev-dreambooth-renca_multi_res

This is a standard PEFT LoRA derived from black-forest-labs/FLUX.1-dev.

The main validation prompt used during training was:

ohwx woman, simple background

Validation settings

  • CFG: 3.0
  • CFG Rescale: 0.0
  • Steps: 28
  • Sampler: None
  • Seed: 42
  • Resolutions: 512x768,1280x768

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
'
Prompt
unconditional (blank prompt)
Negative Prompt
'
Prompt
a ohwx woman wearing a dress at party
Negative Prompt
'
Prompt
a ohwx woman wearing a dress at party
Negative Prompt
'
Prompt
a woman wearing a dress at party
Negative Prompt
'
Prompt
a woman wearing a dress at party
Negative Prompt
'
Prompt
ohwx woman, simple background
Negative Prompt
'
Prompt
ohwx woman, simple background
Negative Prompt
'

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 33
  • Training steps: 500
  • Learning rate: 0.0001
  • Effective batch size: 4
    • Micro-batch size: 1
    • Gradient accumulation steps: 4
    • Number of GPUs: 1
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: adamw_bf16
  • Precision: bf16
  • Quantised: No
  • Xformers: Not used
  • LoRA Rank: 16
  • LoRA Alpha: 16.0
  • LoRA Dropout: 0.1
  • LoRA initialisation style: default

Datasets

renca_512

  • Repeats: 0
  • Total number of images: 20
  • Total number of aspect buckets: 1
  • Resolution: 0.262144 megapixels
  • Cropped: True
  • Crop style: center
  • Crop aspect: random

renca_768

  • Repeats: 0
  • Total number of images: 20
  • Total number of aspect buckets: 1
  • Resolution: 0.589824 megapixels
  • Cropped: True
  • Crop style: center
  • Crop aspect: random

renca_1024

  • Repeats: 0
  • Total number of images: 19
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: True
  • Crop style: center
  • Crop aspect: random

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'trongg/FLUX.1-dev-dreambooth-renca_multi_res'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)

prompt = "ohwx woman, simple background"

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    num_inference_steps=28,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=512,
    height=768,
    guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
3
Inference API
Examples

Model tree for trongg/FLUX.1-dev-dreambooth-renca_multi_res

Adapter
(15816)
this model