fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.25_g2.0-0.05_10_0.004_40
This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0133
- Wer: 0.0959
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
516.9129 | 0.94 | 50 | 252.8849 | 14.0053 |
330.3668 | 1.89 | 100 | 87.2475 | 0.9919 |
61.4207 | 2.83 | 150 | 23.7193 | 1.0 |
28.4469 | 3.77 | 200 | 21.1814 | 1.0 |
27.2279 | 4.72 | 250 | 20.5718 | 1.0 |
26.2915 | 5.66 | 300 | 19.8798 | 1.0 |
25.4979 | 6.6 | 350 | 19.4406 | 1.0 |
24.5512 | 7.55 | 400 | 19.0059 | 1.0 |
24.1332 | 8.49 | 450 | 18.7581 | 1.0 |
24.4038 | 9.43 | 500 | 18.6778 | 1.0 |
24.0403 | 10.38 | 550 | 18.3450 | 1.0 |
22.7387 | 11.32 | 600 | 13.8828 | 0.7278 |
14.1877 | 12.26 | 650 | 6.3008 | 0.3182 |
8.1601 | 13.21 | 700 | 3.9807 | 0.2226 |
5.8662 | 14.15 | 750 | 2.9679 | 0.1789 |
4.6735 | 15.09 | 800 | 2.4585 | 0.1650 |
4.0491 | 16.04 | 850 | 2.1273 | 0.1467 |
3.6131 | 16.98 | 900 | 2.0185 | 0.1475 |
3.2409 | 17.92 | 950 | 1.7619 | 0.1315 |
3.0454 | 18.87 | 1000 | 1.6940 | 0.1296 |
2.8232 | 19.81 | 1050 | 1.5872 | 0.1246 |
2.6343 | 20.75 | 1100 | 1.5053 | 0.1180 |
2.5752 | 21.7 | 1150 | 1.4446 | 0.1149 |
2.4305 | 22.64 | 1200 | 1.4419 | 0.1215 |
2.2781 | 23.58 | 1250 | 1.4462 | 0.1245 |
2.2068 | 24.53 | 1300 | 1.3938 | 0.1117 |
2.2696 | 25.47 | 1350 | 1.3562 | 0.1115 |
2.0947 | 26.42 | 1400 | 1.3029 | 0.1115 |
2.0472 | 27.36 | 1450 | 1.2575 | 0.1109 |
1.9742 | 28.3 | 1500 | 1.2287 | 0.1076 |
1.9159 | 29.25 | 1550 | 1.2284 | 0.1095 |
1.8408 | 30.19 | 1600 | 1.2786 | 0.1130 |
1.819 | 31.13 | 1650 | 1.2388 | 0.1124 |
1.8066 | 32.08 | 1700 | 1.1771 | 0.0996 |
1.6811 | 33.02 | 1750 | 1.1634 | 0.1076 |
1.6524 | 33.96 | 1800 | 1.1327 | 0.1007 |
1.5504 | 34.91 | 1850 | 1.1447 | 0.1074 |
1.5791 | 35.85 | 1900 | 1.1347 | 0.1037 |
1.5679 | 36.79 | 1950 | 1.1095 | 0.0999 |
1.5048 | 37.74 | 2000 | 1.1328 | 0.1071 |
1.5465 | 38.68 | 2050 | 1.1442 | 0.1033 |
1.4368 | 39.62 | 2100 | 1.0938 | 0.1009 |
1.4346 | 40.57 | 2150 | 1.0875 | 0.1014 |
1.3809 | 41.51 | 2200 | 1.1307 | 0.1069 |
1.343 | 42.45 | 2250 | 1.0898 | 0.1019 |
1.2771 | 43.4 | 2300 | 1.0991 | 0.1039 |
1.263 | 44.34 | 2350 | 1.0925 | 0.0957 |
1.2803 | 45.28 | 2400 | 1.0552 | 0.0954 |
1.2236 | 46.23 | 2450 | 1.0765 | 0.1059 |
1.2075 | 47.17 | 2500 | 1.0713 | 0.1054 |
1.1767 | 48.11 | 2550 | 1.0560 | 0.1011 |
1.1757 | 49.06 | 2600 | 1.0584 | 0.1007 |
1.1324 | 50.0 | 2650 | 1.0491 | 0.1008 |
1.0932 | 50.94 | 2700 | 1.0302 | 0.0953 |
1.1574 | 51.89 | 2750 | 1.0367 | 0.0938 |
1.0113 | 52.83 | 2800 | 1.0461 | 0.0974 |
1.108 | 53.77 | 2850 | 1.0407 | 0.0955 |
1.081 | 54.72 | 2900 | 1.0483 | 0.0998 |
0.9996 | 55.66 | 2950 | 1.0381 | 0.0946 |
0.9785 | 56.6 | 3000 | 1.0296 | 0.0947 |
1.0465 | 57.55 | 3050 | 1.0366 | 0.0993 |
1.0241 | 58.49 | 3100 | 1.0341 | 0.1011 |
1.0015 | 59.43 | 3150 | 1.0302 | 0.0934 |
1.0161 | 60.38 | 3200 | 1.0456 | 0.1036 |
0.9228 | 61.32 | 3250 | 1.0287 | 0.0981 |
0.9959 | 62.26 | 3300 | 1.0318 | 0.0976 |
0.905 | 63.21 | 3350 | 1.0311 | 0.1031 |
0.9429 | 64.15 | 3400 | 1.0332 | 0.1004 |
0.9041 | 65.09 | 3450 | 1.0279 | 0.0965 |
0.907 | 66.04 | 3500 | 1.0192 | 0.0974 |
0.9223 | 66.98 | 3550 | 1.0288 | 0.0970 |
0.9433 | 67.92 | 3600 | 1.0205 | 0.0978 |
0.9044 | 68.87 | 3650 | 1.0229 | 0.0953 |
0.8956 | 69.81 | 3700 | 1.0178 | 0.0953 |
0.8719 | 70.75 | 3750 | 1.0178 | 0.0955 |
0.9081 | 71.7 | 3800 | 1.0198 | 0.0943 |
0.8458 | 72.64 | 3850 | 1.0253 | 0.0937 |
0.8462 | 73.58 | 3900 | 1.0195 | 0.0912 |
0.7924 | 74.53 | 3950 | 1.0253 | 0.0905 |
0.8997 | 75.47 | 4000 | 1.0275 | 0.0920 |
0.8403 | 76.42 | 4050 | 1.0175 | 0.0933 |
0.8519 | 77.36 | 4100 | 1.0261 | 0.0985 |
0.8286 | 78.3 | 4150 | 1.0216 | 0.0976 |
0.7825 | 79.25 | 4200 | 1.0164 | 0.0942 |
0.8315 | 80.19 | 4250 | 1.0195 | 0.0943 |
0.8347 | 81.13 | 4300 | 1.0256 | 0.0968 |
0.8244 | 82.08 | 4350 | 1.0264 | 0.0948 |
0.8063 | 83.02 | 4400 | 1.0282 | 0.0931 |
0.7904 | 83.96 | 4450 | 1.0226 | 0.0924 |
0.852 | 84.91 | 4500 | 1.0218 | 0.0935 |
0.8013 | 85.85 | 4550 | 1.0202 | 0.0951 |
0.8174 | 86.79 | 4600 | 1.0153 | 0.0934 |
0.8166 | 87.74 | 4650 | 1.0168 | 0.0958 |
0.8036 | 88.68 | 4700 | 1.0182 | 0.0962 |
0.7998 | 89.62 | 4750 | 1.0169 | 0.0962 |
0.7383 | 90.57 | 4800 | 1.0158 | 0.0957 |
0.8606 | 91.51 | 4850 | 1.0148 | 0.0951 |
0.7438 | 92.45 | 4900 | 1.0123 | 0.0944 |
0.848 | 93.4 | 4950 | 1.0135 | 0.0956 |
0.7839 | 94.34 | 5000 | 1.0140 | 0.0957 |
0.7708 | 95.28 | 5050 | 1.0130 | 0.0958 |
0.8123 | 96.23 | 5100 | 1.0138 | 0.0957 |
0.7656 | 97.17 | 5150 | 1.0135 | 0.0958 |
0.8085 | 98.11 | 5200 | 1.0136 | 0.0960 |
0.7987 | 99.06 | 5250 | 1.0135 | 0.0958 |
0.7917 | 100.0 | 5300 | 1.0133 | 0.0959 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for tuanio/fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.25_g2.0-0.05_10_0.004_40
Base model
nguyenvulebinh/wav2vec2-base-vietnamese-250h