fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.99_g0.5-0.05_10_0.004_40
This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 4.1495
- Wer: 0.0930
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2149.8069 | 0.94 | 50 | 1029.5103 | 12.5140 |
1384.9331 | 1.89 | 100 | 295.9721 | 0.9978 |
219.794 | 2.83 | 150 | 86.8886 | 1.0 |
113.249 | 3.77 | 200 | 83.8456 | 1.0 |
109.1227 | 4.72 | 250 | 81.2277 | 1.0 |
105.1573 | 5.66 | 300 | 78.3234 | 1.0 |
101.7412 | 6.6 | 350 | 76.3514 | 1.0 |
97.6664 | 7.55 | 400 | 74.8664 | 1.0 |
95.8132 | 8.49 | 450 | 74.1711 | 1.0 |
96.7632 | 9.43 | 500 | 73.7442 | 1.0 |
95.3477 | 10.38 | 550 | 73.6445 | 1.0 |
95.4528 | 11.32 | 600 | 73.7788 | 0.9991 |
91.1317 | 12.26 | 650 | 66.9474 | 0.9809 |
71.8284 | 13.21 | 700 | 35.2335 | 0.4713 |
40.6304 | 14.15 | 750 | 19.0379 | 0.2671 |
26.5956 | 15.09 | 800 | 13.2650 | 0.2020 |
20.6269 | 16.04 | 850 | 10.4302 | 0.1667 |
17.2297 | 16.98 | 900 | 9.0816 | 0.1531 |
14.7348 | 17.92 | 950 | 7.7998 | 0.1358 |
13.4356 | 18.87 | 1000 | 7.3014 | 0.1381 |
12.2847 | 19.81 | 1050 | 6.9627 | 0.1386 |
11.5782 | 20.75 | 1100 | 6.3901 | 0.1300 |
11.1732 | 21.7 | 1150 | 6.0007 | 0.1185 |
10.2335 | 22.64 | 1200 | 5.9507 | 0.1261 |
9.7343 | 23.58 | 1250 | 5.6958 | 0.1177 |
9.0428 | 24.53 | 1300 | 5.6682 | 0.1160 |
9.117 | 25.47 | 1350 | 5.4908 | 0.1161 |
8.4094 | 26.42 | 1400 | 5.3418 | 0.1135 |
8.2214 | 27.36 | 1450 | 5.1586 | 0.1094 |
7.885 | 28.3 | 1500 | 4.9319 | 0.1086 |
7.7676 | 29.25 | 1550 | 5.0031 | 0.1129 |
7.4375 | 30.19 | 1600 | 4.9441 | 0.1100 |
7.0199 | 31.13 | 1650 | 4.7904 | 0.1041 |
7.0727 | 32.08 | 1700 | 4.7495 | 0.1031 |
6.6648 | 33.02 | 1750 | 4.6025 | 0.1018 |
6.5168 | 33.96 | 1800 | 4.7012 | 0.1019 |
6.2194 | 34.91 | 1850 | 4.6766 | 0.1087 |
6.15 | 35.85 | 1900 | 4.5767 | 0.1031 |
6.1484 | 36.79 | 1950 | 4.4289 | 0.1064 |
5.7505 | 37.74 | 2000 | 4.4011 | 0.0991 |
5.8478 | 38.68 | 2050 | 4.4077 | 0.0952 |
5.5878 | 39.62 | 2100 | 4.4689 | 0.0989 |
5.6626 | 40.57 | 2150 | 4.4692 | 0.0950 |
5.3951 | 41.51 | 2200 | 4.4790 | 0.0967 |
5.3447 | 42.45 | 2250 | 4.3929 | 0.0974 |
5.1027 | 43.4 | 2300 | 4.3692 | 0.0949 |
5.1015 | 44.34 | 2350 | 4.3436 | 0.0935 |
5.0664 | 45.28 | 2400 | 4.2644 | 0.0956 |
4.7384 | 46.23 | 2450 | 4.2963 | 0.0999 |
4.6469 | 47.17 | 2500 | 4.2131 | 0.0933 |
4.5561 | 48.11 | 2550 | 4.2021 | 0.0952 |
4.7177 | 49.06 | 2600 | 4.2031 | 0.0983 |
4.4587 | 50.0 | 2650 | 4.2315 | 0.0991 |
4.3943 | 50.94 | 2700 | 4.2598 | 0.0953 |
4.5284 | 51.89 | 2750 | 4.1909 | 0.0944 |
4.0457 | 52.83 | 2800 | 4.2877 | 0.0963 |
4.2793 | 53.77 | 2850 | 4.2052 | 0.0953 |
4.387 | 54.72 | 2900 | 4.2593 | 0.1024 |
3.9789 | 55.66 | 2950 | 4.2190 | 0.0950 |
3.8419 | 56.6 | 3000 | 4.2314 | 0.0930 |
4.0432 | 57.55 | 3050 | 4.2830 | 0.0983 |
4.0056 | 58.49 | 3100 | 4.2671 | 0.1029 |
3.8839 | 59.43 | 3150 | 4.2807 | 0.0951 |
3.9377 | 60.38 | 3200 | 4.3071 | 0.1009 |
3.6095 | 61.32 | 3250 | 4.2250 | 0.0938 |
3.944 | 62.26 | 3300 | 4.2492 | 0.1008 |
3.5562 | 63.21 | 3350 | 4.2156 | 0.1013 |
3.6647 | 64.15 | 3400 | 4.2157 | 0.0974 |
3.5694 | 65.09 | 3450 | 4.2178 | 0.0970 |
3.6198 | 66.04 | 3500 | 4.1781 | 0.0961 |
3.5949 | 66.98 | 3550 | 4.1398 | 0.0929 |
3.605 | 67.92 | 3600 | 4.1940 | 0.0969 |
3.4902 | 68.87 | 3650 | 4.1712 | 0.0918 |
3.4942 | 69.81 | 3700 | 4.1447 | 0.0898 |
3.4367 | 70.75 | 3750 | 4.1606 | 0.0944 |
3.4854 | 71.7 | 3800 | 4.1472 | 0.0932 |
3.3036 | 72.64 | 3850 | 4.1874 | 0.0923 |
3.2617 | 73.58 | 3900 | 4.1866 | 0.0941 |
3.1137 | 74.53 | 3950 | 4.1552 | 0.0906 |
3.4462 | 75.47 | 4000 | 4.1435 | 0.0905 |
3.2211 | 76.42 | 4050 | 4.1213 | 0.0935 |
3.3305 | 77.36 | 4100 | 4.1661 | 0.0933 |
3.2492 | 78.3 | 4150 | 4.1404 | 0.0923 |
3.0898 | 79.25 | 4200 | 4.1700 | 0.0928 |
3.2347 | 80.19 | 4250 | 4.1557 | 0.0903 |
3.2544 | 81.13 | 4300 | 4.1916 | 0.0961 |
3.1672 | 82.08 | 4350 | 4.1605 | 0.0918 |
3.1577 | 83.02 | 4400 | 4.1670 | 0.0921 |
3.0994 | 83.96 | 4450 | 4.1541 | 0.0916 |
3.2358 | 84.91 | 4500 | 4.1625 | 0.0917 |
3.0938 | 85.85 | 4550 | 4.1797 | 0.0923 |
3.1622 | 86.79 | 4600 | 4.1639 | 0.0909 |
3.2359 | 87.74 | 4650 | 4.1759 | 0.0938 |
3.188 | 88.68 | 4700 | 4.1590 | 0.0913 |
3.177 | 89.62 | 4750 | 4.1573 | 0.0912 |
2.9153 | 90.57 | 4800 | 4.1643 | 0.0926 |
3.3507 | 91.51 | 4850 | 4.1631 | 0.0930 |
2.8699 | 92.45 | 4900 | 4.1474 | 0.0913 |
3.3063 | 93.4 | 4950 | 4.1534 | 0.0926 |
3.0762 | 94.34 | 5000 | 4.1586 | 0.0926 |
2.9829 | 95.28 | 5050 | 4.1550 | 0.0928 |
3.172 | 96.23 | 5100 | 4.1527 | 0.0930 |
3.0076 | 97.17 | 5150 | 4.1520 | 0.0931 |
3.125 | 98.11 | 5200 | 4.1517 | 0.0926 |
3.0391 | 99.06 | 5250 | 4.1495 | 0.0928 |
3.2004 | 100.0 | 5300 | 4.1495 | 0.0930 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 2
Model tree for tuanio/fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.99_g0.5-0.05_10_0.004_40
Base model
nguyenvulebinh/wav2vec2-base-vietnamese-250h