fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.99_g2.0-0.05_10_0.004_40
This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.9977
- Wer: 0.0897
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2069.4439 | 0.94 | 50 | 995.1141 | 12.4711 |
1363.7322 | 1.89 | 100 | 368.4300 | 0.9986 |
280.6324 | 2.83 | 150 | 95.5134 | 1.0 |
113.4733 | 3.77 | 200 | 82.3901 | 1.0 |
107.4746 | 4.72 | 250 | 80.1978 | 1.0 |
103.9621 | 5.66 | 300 | 77.6156 | 1.0 |
101.1517 | 6.6 | 350 | 75.8253 | 1.0 |
97.3946 | 7.55 | 400 | 74.4834 | 1.0 |
95.6127 | 8.49 | 450 | 73.5984 | 1.0 |
96.617 | 9.43 | 500 | 73.0784 | 1.0 |
95.0988 | 10.38 | 550 | 72.0475 | 1.0 |
91.6734 | 11.32 | 600 | 56.5232 | 0.7296 |
61.804 | 12.26 | 650 | 31.1295 | 0.4563 |
36.8773 | 13.21 | 700 | 17.1019 | 0.2573 |
24.3159 | 14.15 | 750 | 12.2619 | 0.1894 |
18.8062 | 15.09 | 800 | 9.9440 | 0.1692 |
16.0671 | 16.04 | 850 | 8.5476 | 0.1489 |
14.1267 | 16.98 | 900 | 7.8480 | 0.1537 |
12.5625 | 17.92 | 950 | 7.0957 | 0.1342 |
11.8023 | 18.87 | 1000 | 6.7007 | 0.1328 |
10.925 | 19.81 | 1050 | 6.3680 | 0.1286 |
10.1188 | 20.75 | 1100 | 6.0900 | 0.1204 |
9.9066 | 21.7 | 1150 | 5.8583 | 0.1236 |
9.299 | 22.64 | 1200 | 5.6292 | 0.1191 |
8.8681 | 23.58 | 1250 | 5.5766 | 0.1184 |
8.382 | 24.53 | 1300 | 5.5799 | 0.1159 |
8.4245 | 25.47 | 1350 | 5.2661 | 0.1140 |
7.7502 | 26.42 | 1400 | 5.1468 | 0.1096 |
7.8289 | 27.36 | 1450 | 5.0905 | 0.1088 |
7.729 | 28.3 | 1500 | 5.0458 | 0.1138 |
7.5606 | 29.25 | 1550 | 4.9833 | 0.1082 |
7.095 | 30.19 | 1600 | 4.8245 | 0.1023 |
6.6926 | 31.13 | 1650 | 4.7635 | 0.1013 |
7.1713 | 32.08 | 1700 | 4.8290 | 0.1019 |
6.9475 | 33.02 | 1750 | 4.7296 | 0.1051 |
6.4841 | 33.96 | 1800 | 4.6856 | 0.0998 |
6.1089 | 34.91 | 1850 | 4.6471 | 0.1053 |
6.1785 | 35.85 | 1900 | 4.6827 | 0.1005 |
6.2511 | 36.79 | 1950 | 4.6419 | 0.1024 |
6.0869 | 37.74 | 2000 | 4.6392 | 0.1082 |
5.9902 | 38.68 | 2050 | 4.4272 | 0.1044 |
5.3991 | 39.62 | 2100 | 4.4101 | 0.1037 |
5.3874 | 40.57 | 2150 | 4.2949 | 0.1004 |
5.1402 | 41.51 | 2200 | 4.3465 | 0.1024 |
5.1982 | 42.45 | 2250 | 4.3083 | 0.1066 |
4.9461 | 43.4 | 2300 | 4.3431 | 0.0967 |
4.9867 | 44.34 | 2350 | 4.2870 | 0.0981 |
4.929 | 45.28 | 2400 | 4.1885 | 0.0988 |
4.6383 | 46.23 | 2450 | 4.2757 | 0.1025 |
4.634 | 47.17 | 2500 | 4.1286 | 0.0998 |
4.4744 | 48.11 | 2550 | 4.1603 | 0.0963 |
4.5322 | 49.06 | 2600 | 4.2124 | 0.1020 |
4.4657 | 50.0 | 2650 | 4.2822 | 0.1023 |
4.457 | 50.94 | 2700 | 4.2232 | 0.0947 |
4.5771 | 51.89 | 2750 | 4.1734 | 0.0939 |
4.0174 | 52.83 | 2800 | 4.2091 | 0.0976 |
4.4103 | 53.77 | 2850 | 4.1129 | 0.0954 |
4.2772 | 54.72 | 2900 | 4.2312 | 0.0966 |
3.9499 | 55.66 | 2950 | 4.2480 | 0.1010 |
3.9354 | 56.6 | 3000 | 4.1807 | 0.1013 |
4.1267 | 57.55 | 3050 | 4.1947 | 0.0988 |
4.0414 | 58.49 | 3100 | 4.1440 | 0.1031 |
3.8629 | 59.43 | 3150 | 4.1198 | 0.0988 |
3.9139 | 60.38 | 3200 | 4.1225 | 0.0992 |
3.5162 | 61.32 | 3250 | 4.1204 | 0.0974 |
3.8449 | 62.26 | 3300 | 4.1679 | 0.0948 |
3.5105 | 63.21 | 3350 | 4.1508 | 0.0967 |
3.6462 | 64.15 | 3400 | 4.1263 | 0.0989 |
3.4621 | 65.09 | 3450 | 4.0731 | 0.0933 |
3.5294 | 66.04 | 3500 | 4.0631 | 0.0922 |
3.4527 | 66.98 | 3550 | 4.0846 | 0.0938 |
3.4661 | 67.92 | 3600 | 4.0970 | 0.0945 |
3.3707 | 68.87 | 3650 | 4.1004 | 0.0925 |
3.4103 | 69.81 | 3700 | 4.0616 | 0.0913 |
3.3892 | 70.75 | 3750 | 4.0689 | 0.0945 |
3.4639 | 71.7 | 3800 | 4.1037 | 0.0976 |
3.2201 | 72.64 | 3850 | 4.0952 | 0.0948 |
3.2162 | 73.58 | 3900 | 4.0467 | 0.0938 |
2.9934 | 74.53 | 3950 | 4.0333 | 0.0908 |
3.3083 | 75.47 | 4000 | 4.0238 | 0.0896 |
3.1558 | 76.42 | 4050 | 4.0116 | 0.0908 |
3.2886 | 77.36 | 4100 | 4.0221 | 0.0921 |
3.1983 | 78.3 | 4150 | 4.0320 | 0.0908 |
2.9773 | 79.25 | 4200 | 3.9992 | 0.0913 |
3.1754 | 80.19 | 4250 | 3.9902 | 0.0910 |
3.1124 | 81.13 | 4300 | 3.9905 | 0.0914 |
3.0626 | 82.08 | 4350 | 4.0065 | 0.0911 |
3.0676 | 83.02 | 4400 | 3.9876 | 0.0908 |
3.0152 | 83.96 | 4450 | 3.9895 | 0.0910 |
3.2035 | 84.91 | 4500 | 3.9913 | 0.0907 |
3.0765 | 85.85 | 4550 | 4.0102 | 0.0929 |
3.1136 | 86.79 | 4600 | 3.9986 | 0.0922 |
3.0455 | 87.74 | 4650 | 4.0120 | 0.0934 |
3.1063 | 88.68 | 4700 | 3.9956 | 0.0916 |
3.0908 | 89.62 | 4750 | 3.9880 | 0.0904 |
2.7746 | 90.57 | 4800 | 4.0073 | 0.0893 |
3.3105 | 91.51 | 4850 | 4.0035 | 0.0893 |
2.7955 | 92.45 | 4900 | 3.9969 | 0.0897 |
3.2318 | 93.4 | 4950 | 3.9973 | 0.0900 |
3.0095 | 94.34 | 5000 | 3.9992 | 0.0901 |
2.9096 | 95.28 | 5050 | 3.9995 | 0.0899 |
3.0568 | 96.23 | 5100 | 3.9999 | 0.0899 |
2.9639 | 97.17 | 5150 | 3.9983 | 0.0898 |
3.0901 | 98.11 | 5200 | 3.9998 | 0.0901 |
3.0161 | 99.06 | 5250 | 3.9981 | 0.0898 |
3.0623 | 100.0 | 5300 | 3.9977 | 0.0897 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for tuanio/fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.99_g2.0-0.05_10_0.004_40
Base model
nguyenvulebinh/wav2vec2-base-vietnamese-250h