fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.99_g2.0-0.05_10_0.004_40

This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.9977
  • Wer: 0.0897

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Wer
2069.4439 0.94 50 995.1141 12.4711
1363.7322 1.89 100 368.4300 0.9986
280.6324 2.83 150 95.5134 1.0
113.4733 3.77 200 82.3901 1.0
107.4746 4.72 250 80.1978 1.0
103.9621 5.66 300 77.6156 1.0
101.1517 6.6 350 75.8253 1.0
97.3946 7.55 400 74.4834 1.0
95.6127 8.49 450 73.5984 1.0
96.617 9.43 500 73.0784 1.0
95.0988 10.38 550 72.0475 1.0
91.6734 11.32 600 56.5232 0.7296
61.804 12.26 650 31.1295 0.4563
36.8773 13.21 700 17.1019 0.2573
24.3159 14.15 750 12.2619 0.1894
18.8062 15.09 800 9.9440 0.1692
16.0671 16.04 850 8.5476 0.1489
14.1267 16.98 900 7.8480 0.1537
12.5625 17.92 950 7.0957 0.1342
11.8023 18.87 1000 6.7007 0.1328
10.925 19.81 1050 6.3680 0.1286
10.1188 20.75 1100 6.0900 0.1204
9.9066 21.7 1150 5.8583 0.1236
9.299 22.64 1200 5.6292 0.1191
8.8681 23.58 1250 5.5766 0.1184
8.382 24.53 1300 5.5799 0.1159
8.4245 25.47 1350 5.2661 0.1140
7.7502 26.42 1400 5.1468 0.1096
7.8289 27.36 1450 5.0905 0.1088
7.729 28.3 1500 5.0458 0.1138
7.5606 29.25 1550 4.9833 0.1082
7.095 30.19 1600 4.8245 0.1023
6.6926 31.13 1650 4.7635 0.1013
7.1713 32.08 1700 4.8290 0.1019
6.9475 33.02 1750 4.7296 0.1051
6.4841 33.96 1800 4.6856 0.0998
6.1089 34.91 1850 4.6471 0.1053
6.1785 35.85 1900 4.6827 0.1005
6.2511 36.79 1950 4.6419 0.1024
6.0869 37.74 2000 4.6392 0.1082
5.9902 38.68 2050 4.4272 0.1044
5.3991 39.62 2100 4.4101 0.1037
5.3874 40.57 2150 4.2949 0.1004
5.1402 41.51 2200 4.3465 0.1024
5.1982 42.45 2250 4.3083 0.1066
4.9461 43.4 2300 4.3431 0.0967
4.9867 44.34 2350 4.2870 0.0981
4.929 45.28 2400 4.1885 0.0988
4.6383 46.23 2450 4.2757 0.1025
4.634 47.17 2500 4.1286 0.0998
4.4744 48.11 2550 4.1603 0.0963
4.5322 49.06 2600 4.2124 0.1020
4.4657 50.0 2650 4.2822 0.1023
4.457 50.94 2700 4.2232 0.0947
4.5771 51.89 2750 4.1734 0.0939
4.0174 52.83 2800 4.2091 0.0976
4.4103 53.77 2850 4.1129 0.0954
4.2772 54.72 2900 4.2312 0.0966
3.9499 55.66 2950 4.2480 0.1010
3.9354 56.6 3000 4.1807 0.1013
4.1267 57.55 3050 4.1947 0.0988
4.0414 58.49 3100 4.1440 0.1031
3.8629 59.43 3150 4.1198 0.0988
3.9139 60.38 3200 4.1225 0.0992
3.5162 61.32 3250 4.1204 0.0974
3.8449 62.26 3300 4.1679 0.0948
3.5105 63.21 3350 4.1508 0.0967
3.6462 64.15 3400 4.1263 0.0989
3.4621 65.09 3450 4.0731 0.0933
3.5294 66.04 3500 4.0631 0.0922
3.4527 66.98 3550 4.0846 0.0938
3.4661 67.92 3600 4.0970 0.0945
3.3707 68.87 3650 4.1004 0.0925
3.4103 69.81 3700 4.0616 0.0913
3.3892 70.75 3750 4.0689 0.0945
3.4639 71.7 3800 4.1037 0.0976
3.2201 72.64 3850 4.0952 0.0948
3.2162 73.58 3900 4.0467 0.0938
2.9934 74.53 3950 4.0333 0.0908
3.3083 75.47 4000 4.0238 0.0896
3.1558 76.42 4050 4.0116 0.0908
3.2886 77.36 4100 4.0221 0.0921
3.1983 78.3 4150 4.0320 0.0908
2.9773 79.25 4200 3.9992 0.0913
3.1754 80.19 4250 3.9902 0.0910
3.1124 81.13 4300 3.9905 0.0914
3.0626 82.08 4350 4.0065 0.0911
3.0676 83.02 4400 3.9876 0.0908
3.0152 83.96 4450 3.9895 0.0910
3.2035 84.91 4500 3.9913 0.0907
3.0765 85.85 4550 4.0102 0.0929
3.1136 86.79 4600 3.9986 0.0922
3.0455 87.74 4650 4.0120 0.0934
3.1063 88.68 4700 3.9956 0.0916
3.0908 89.62 4750 3.9880 0.0904
2.7746 90.57 4800 4.0073 0.0893
3.3105 91.51 4850 4.0035 0.0893
2.7955 92.45 4900 3.9969 0.0897
3.2318 93.4 4950 3.9973 0.0900
3.0095 94.34 5000 3.9992 0.0901
2.9096 95.28 5050 3.9995 0.0899
3.0568 96.23 5100 3.9999 0.0899
2.9639 97.17 5150 3.9983 0.0898
3.0901 98.11 5200 3.9998 0.0901
3.0161 99.06 5250 3.9981 0.0898
3.0623 100.0 5300 3.9977 0.0897

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for tuanio/fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.99_g2.0-0.05_10_0.004_40

Finetuned
(56)
this model