fine-w2v2base-bs16-ep200-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.99_g2-0.05_10_0.004_40-final
This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 4.2098
- Wer: 0.1111
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 200
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2070.5209 | 0.94 | 50 | 1050.6107 | 15.9194 |
1893.1078 | 1.89 | 100 | 856.5042 | 15.9084 |
1402.1547 | 2.83 | 150 | 638.6856 | 15.9718 |
1145.3789 | 3.77 | 200 | 541.5690 | 15.9801 |
921.5391 | 4.72 | 250 | 388.8102 | 15.9792 |
272.1148 | 5.66 | 300 | 86.7826 | 1.0 |
111.1403 | 6.6 | 350 | 82.6906 | 1.0 |
104.6625 | 7.55 | 400 | 80.7376 | 1.0 |
99.9559 | 8.49 | 450 | 79.5480 | 1.0 |
99.3013 | 9.43 | 500 | 78.0927 | 1.0 |
97.293 | 10.38 | 550 | 76.9956 | 1.0 |
98.062 | 11.32 | 600 | 76.4573 | 1.0 |
96.0945 | 12.26 | 650 | 75.6026 | 1.0 |
95.9684 | 13.21 | 700 | 75.6452 | 1.0 |
94.6767 | 14.15 | 750 | 75.9780 | 1.0 |
93.8767 | 15.09 | 800 | 77.8212 | 0.9992 |
91.9104 | 16.04 | 850 | 78.9036 | 1.0012 |
89.6319 | 16.98 | 900 | 74.7778 | 0.9991 |
87.5197 | 17.92 | 950 | 73.3647 | 0.9993 |
86.9794 | 18.87 | 1000 | 71.1035 | 0.9998 |
84.6621 | 19.81 | 1050 | 67.8181 | 0.9998 |
81.1323 | 20.75 | 1100 | 53.9551 | 0.8985 |
56.2753 | 21.7 | 1150 | 25.1096 | 0.3755 |
32.2015 | 22.64 | 1200 | 15.0509 | 0.2327 |
22.3559 | 23.58 | 1250 | 11.2544 | 0.1796 |
17.766 | 24.53 | 1300 | 9.1760 | 0.1561 |
15.3377 | 25.47 | 1350 | 7.9738 | 0.1502 |
13.0247 | 26.42 | 1400 | 7.1329 | 0.1391 |
12.047 | 27.36 | 1450 | 6.4816 | 0.1260 |
10.874 | 28.3 | 1500 | 6.0990 | 0.1260 |
10.3489 | 29.25 | 1550 | 6.0334 | 0.1276 |
9.5992 | 30.19 | 1600 | 5.6333 | 0.1204 |
8.7578 | 31.13 | 1650 | 5.4704 | 0.1115 |
8.8291 | 32.08 | 1700 | 5.2070 | 0.1063 |
8.1346 | 33.02 | 1750 | 5.1131 | 0.1092 |
7.7698 | 33.96 | 1800 | 4.9853 | 0.1059 |
7.2385 | 34.91 | 1850 | 4.9884 | 0.1092 |
7.2942 | 35.85 | 1900 | 4.9169 | 0.1004 |
7.1231 | 36.79 | 1950 | 4.7677 | 0.1009 |
6.6689 | 37.74 | 2000 | 4.8707 | 0.1078 |
6.6686 | 38.68 | 2050 | 4.6952 | 0.1023 |
6.3965 | 39.62 | 2100 | 4.9130 | 0.1065 |
6.2281 | 40.57 | 2150 | 4.6463 | 0.0982 |
5.8648 | 41.51 | 2200 | 4.8060 | 0.1083 |
5.8669 | 42.45 | 2250 | 4.7226 | 0.1088 |
5.4889 | 43.4 | 2300 | 4.6982 | 0.1104 |
5.5636 | 44.34 | 2350 | 4.6289 | 0.1089 |
5.512 | 45.28 | 2400 | 4.4615 | 0.1035 |
5.1006 | 46.23 | 2450 | 4.4759 | 0.0973 |
5.04 | 47.17 | 2500 | 4.4644 | 0.1072 |
4.7533 | 48.11 | 2550 | 4.3047 | 0.1011 |
4.811 | 49.06 | 2600 | 4.3995 | 0.0978 |
4.4865 | 50.0 | 2650 | 4.2904 | 0.0945 |
4.41 | 50.94 | 2700 | 4.2735 | 0.0919 |
4.6938 | 51.89 | 2750 | 4.2735 | 0.0929 |
4.2775 | 52.83 | 2800 | 4.3565 | 0.0944 |
4.4868 | 53.77 | 2850 | 4.3067 | 0.0936 |
4.3502 | 54.72 | 2900 | 4.3263 | 0.1015 |
3.9422 | 55.66 | 2950 | 4.1456 | 0.0986 |
3.83 | 56.6 | 3000 | 4.1247 | 0.0994 |
4.0432 | 57.55 | 3050 | 4.1449 | 0.0943 |
3.9007 | 58.49 | 3100 | 4.2760 | 0.1001 |
3.7194 | 59.43 | 3150 | 4.1489 | 0.0938 |
3.791 | 60.38 | 3200 | 4.1865 | 0.0952 |
3.439 | 61.32 | 3250 | 4.0903 | 0.0978 |
3.666 | 62.26 | 3300 | 4.1479 | 0.1019 |
3.3243 | 63.21 | 3350 | 4.0614 | 0.1013 |
3.389 | 64.15 | 3400 | 4.0781 | 0.0987 |
3.3151 | 65.09 | 3450 | 4.2045 | 0.1063 |
3.6432 | 66.04 | 3500 | 4.2502 | 0.1057 |
3.3547 | 66.98 | 3550 | 4.0707 | 0.0946 |
3.323 | 67.92 | 3600 | 4.1075 | 0.0962 |
3.1881 | 68.87 | 3650 | 4.1951 | 0.0992 |
3.2008 | 69.81 | 3700 | 4.1416 | 0.0945 |
3.079 | 70.75 | 3750 | 4.1982 | 0.0923 |
3.0741 | 71.7 | 3800 | 4.2177 | 0.0985 |
2.9199 | 72.64 | 3850 | 4.2224 | 0.0969 |
2.9009 | 73.58 | 3900 | 4.1863 | 0.0956 |
2.6505 | 74.53 | 3950 | 4.1560 | 0.0987 |
2.9569 | 75.47 | 4000 | 4.1147 | 0.0888 |
2.7948 | 76.42 | 4050 | 4.2427 | 0.1057 |
2.9366 | 77.36 | 4100 | 4.3038 | 0.1091 |
2.9399 | 78.3 | 4150 | 4.2281 | 0.1020 |
2.5798 | 79.25 | 4200 | 4.2448 | 0.0980 |
2.715 | 80.19 | 4250 | 4.1647 | 0.0931 |
2.615 | 81.13 | 4300 | 4.1305 | 0.0952 |
2.6131 | 82.08 | 4350 | 4.2630 | 0.0984 |
2.5931 | 83.02 | 4400 | 4.1665 | 0.1034 |
2.4909 | 83.96 | 4450 | 4.1648 | 0.0947 |
2.5452 | 84.91 | 4500 | 4.1319 | 0.1029 |
2.3713 | 85.85 | 4550 | 4.0906 | 0.1014 |
2.452 | 86.79 | 4600 | 4.0809 | 0.0968 |
2.3391 | 87.74 | 4650 | 4.1726 | 0.0990 |
2.3136 | 88.68 | 4700 | 4.1336 | 0.0933 |
2.2644 | 89.62 | 4750 | 4.1530 | 0.1041 |
2.0899 | 90.57 | 4800 | 4.2035 | 0.1102 |
2.4311 | 91.51 | 4850 | 4.1507 | 0.0989 |
1.9583 | 92.45 | 4900 | 4.2440 | 0.0996 |
2.4467 | 93.4 | 4950 | 4.1794 | 0.1077 |
2.1111 | 94.34 | 5000 | 4.1224 | 0.0926 |
2.0238 | 95.28 | 5050 | 4.1248 | 0.0948 |
2.1593 | 96.23 | 5100 | 4.2034 | 0.1085 |
2.033 | 97.17 | 5150 | 4.1157 | 0.1119 |
2.0795 | 98.11 | 5200 | 4.1638 | 0.1004 |
2.0027 | 99.06 | 5250 | 4.1367 | 0.1029 |
2.0702 | 100.0 | 5300 | 4.1131 | 0.0993 |
2.0022 | 100.94 | 5350 | 4.0984 | 0.1034 |
2.0313 | 101.89 | 5400 | 4.1044 | 0.0979 |
2.0468 | 102.83 | 5450 | 4.1019 | 0.0982 |
1.9196 | 103.77 | 5500 | 4.1935 | 0.1070 |
1.8988 | 104.72 | 5550 | 4.1279 | 0.1032 |
1.9784 | 105.66 | 5600 | 4.1553 | 0.1068 |
2.0349 | 106.6 | 5650 | 4.1259 | 0.1060 |
1.6378 | 107.55 | 5700 | 4.1543 | 0.1056 |
1.7948 | 108.49 | 5750 | 4.1599 | 0.1122 |
1.8042 | 109.43 | 5800 | 4.1429 | 0.1113 |
1.7872 | 110.38 | 5850 | 4.1495 | 0.1032 |
1.8428 | 111.32 | 5900 | 4.1143 | 0.1151 |
1.8995 | 112.26 | 5950 | 4.1219 | 0.1019 |
1.7064 | 113.21 | 6000 | 4.1017 | 0.1115 |
1.5617 | 114.15 | 6050 | 4.0737 | 0.1088 |
1.7554 | 115.09 | 6100 | 4.1050 | 0.1048 |
1.7072 | 116.04 | 6150 | 4.1199 | 0.1077 |
1.6821 | 116.98 | 6200 | 4.1431 | 0.1037 |
1.6876 | 117.92 | 6250 | 4.1442 | 0.1074 |
1.6461 | 118.87 | 6300 | 4.1750 | 0.1019 |
1.5313 | 119.81 | 6350 | 4.1441 | 0.1092 |
1.7041 | 120.75 | 6400 | 4.1632 | 0.1087 |
1.6251 | 121.7 | 6450 | 4.1980 | 0.1094 |
1.6317 | 122.64 | 6500 | 4.1192 | 0.1034 |
1.5896 | 123.58 | 6550 | 4.1356 | 0.1121 |
1.5714 | 124.53 | 6600 | 4.1736 | 0.1090 |
1.3745 | 125.47 | 6650 | 4.2218 | 0.1094 |
1.7257 | 126.42 | 6700 | 4.2172 | 0.1138 |
1.524 | 127.36 | 6750 | 4.1964 | 0.1099 |
1.4954 | 128.3 | 6800 | 4.2411 | 0.1101 |
1.5402 | 129.25 | 6850 | 4.1481 | 0.1079 |
1.5668 | 130.19 | 6900 | 4.1864 | 0.1081 |
1.5251 | 131.13 | 6950 | 4.1792 | 0.1161 |
1.6132 | 132.08 | 7000 | 4.1093 | 0.1094 |
1.6573 | 133.02 | 7050 | 4.1153 | 0.1122 |
1.5327 | 133.96 | 7100 | 4.1231 | 0.1129 |
1.5617 | 134.91 | 7150 | 4.1707 | 0.1200 |
1.5798 | 135.85 | 7200 | 4.1301 | 0.1141 |
1.5294 | 136.79 | 7250 | 4.1376 | 0.1149 |
1.4742 | 137.74 | 7300 | 4.1316 | 0.1149 |
1.569 | 138.68 | 7350 | 4.1947 | 0.1154 |
1.5434 | 139.62 | 7400 | 4.1617 | 0.1130 |
1.4833 | 140.57 | 7450 | 4.1586 | 0.1187 |
1.3112 | 141.51 | 7500 | 4.1543 | 0.1125 |
1.4757 | 142.45 | 7550 | 4.1885 | 0.1127 |
1.4602 | 143.4 | 7600 | 4.1938 | 0.1185 |
1.3891 | 144.34 | 7650 | 4.2258 | 0.1134 |
1.5484 | 145.28 | 7700 | 4.2443 | 0.1130 |
1.3533 | 146.23 | 7750 | 4.2355 | 0.1064 |
1.3938 | 147.17 | 7800 | 4.2510 | 0.1087 |
1.422 | 148.11 | 7850 | 4.2208 | 0.1174 |
1.2897 | 149.06 | 7900 | 4.2606 | 0.1180 |
1.4107 | 150.0 | 7950 | 4.2759 | 0.1113 |
1.3735 | 150.94 | 8000 | 4.2398 | 0.1098 |
1.4142 | 151.89 | 8050 | 4.2370 | 0.1080 |
1.3136 | 152.83 | 8100 | 4.2353 | 0.1061 |
1.4554 | 153.77 | 8150 | 4.2255 | 0.1090 |
1.4135 | 154.72 | 8200 | 4.2362 | 0.1107 |
1.3512 | 155.66 | 8250 | 4.2431 | 0.1099 |
1.3081 | 156.6 | 8300 | 4.2480 | 0.1097 |
1.2292 | 157.55 | 8350 | 4.2302 | 0.1101 |
1.3 | 158.49 | 8400 | 4.2558 | 0.1124 |
1.368 | 159.43 | 8450 | 4.2727 | 0.1082 |
1.3324 | 160.38 | 8500 | 4.2577 | 0.1121 |
1.293 | 161.32 | 8550 | 4.2435 | 0.1153 |
1.2726 | 162.26 | 8600 | 4.2194 | 0.1146 |
1.3561 | 163.21 | 8650 | 4.2485 | 0.1170 |
1.2194 | 164.15 | 8700 | 4.2325 | 0.1115 |
1.3088 | 165.09 | 8750 | 4.2530 | 0.1121 |
1.3285 | 166.04 | 8800 | 4.2556 | 0.1116 |
1.2224 | 166.98 | 8850 | 4.2561 | 0.1098 |
1.3535 | 167.92 | 8900 | 4.2463 | 0.1108 |
1.2354 | 168.87 | 8950 | 4.2457 | 0.1073 |
1.2799 | 169.81 | 9000 | 4.2256 | 0.1098 |
1.2153 | 170.75 | 9050 | 4.2130 | 0.1088 |
1.1879 | 171.7 | 9100 | 4.1974 | 0.1087 |
1.2708 | 172.64 | 9150 | 4.2232 | 0.1133 |
1.3335 | 173.58 | 9200 | 4.2444 | 0.1118 |
1.3543 | 174.53 | 9250 | 4.2460 | 0.1142 |
1.3021 | 175.47 | 9300 | 4.2073 | 0.1104 |
1.2694 | 176.42 | 9350 | 4.2009 | 0.1106 |
1.3015 | 177.36 | 9400 | 4.2318 | 0.1126 |
1.2935 | 178.3 | 9450 | 4.2460 | 0.1142 |
1.2766 | 179.25 | 9500 | 4.2334 | 0.1134 |
1.1748 | 180.19 | 9550 | 4.2197 | 0.1119 |
1.2498 | 181.13 | 9600 | 4.2149 | 0.1107 |
1.2658 | 182.08 | 9650 | 4.2115 | 0.1126 |
1.3142 | 183.02 | 9700 | 4.2067 | 0.1107 |
1.2422 | 183.96 | 9750 | 4.2044 | 0.1123 |
1.2152 | 184.91 | 9800 | 4.2051 | 0.1130 |
1.2157 | 185.85 | 9850 | 4.2080 | 0.1132 |
1.1727 | 186.79 | 9900 | 4.2041 | 0.1104 |
1.2594 | 187.74 | 9950 | 4.2049 | 0.1115 |
1.3206 | 188.68 | 10000 | 4.2014 | 0.1115 |
1.1332 | 189.62 | 10050 | 4.2047 | 0.1114 |
1.2477 | 190.57 | 10100 | 4.2078 | 0.1115 |
1.2712 | 191.51 | 10150 | 4.2069 | 0.1117 |
1.1063 | 192.45 | 10200 | 4.2073 | 0.1119 |
1.3181 | 193.4 | 10250 | 4.2094 | 0.1109 |
1.1348 | 194.34 | 10300 | 4.2090 | 0.1114 |
1.224 | 195.28 | 10350 | 4.2065 | 0.1114 |
1.242 | 196.23 | 10400 | 4.2089 | 0.1112 |
1.1683 | 197.17 | 10450 | 4.2100 | 0.1113 |
1.2693 | 198.11 | 10500 | 4.2081 | 0.1109 |
1.3093 | 199.06 | 10550 | 4.2092 | 0.1109 |
1.229 | 200.0 | 10600 | 4.2098 | 0.1111 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for tuanio/fine-w2v2base-bs16-ep200-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.99_g2-0.05_10_0.004_40-final
Base model
nguyenvulebinh/wav2vec2-base-vietnamese-250h