w2v2_ablation_with_4-layer-ling_head-best_on_tp0.025_tl10_fp0.001_fl16
This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4122
- Wer: 0.0792
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
115.505 | 0.94 | 100 | 81.4452 | 18.6578 |
51.5639 | 1.89 | 200 | 5.2045 | 1.0 |
5.0643 | 2.83 | 300 | 5.2778 | 1.0 |
4.769 | 3.77 | 400 | 4.8450 | 1.0 |
4.5284 | 4.72 | 500 | 4.6743 | 1.0 |
4.424 | 5.66 | 600 | 4.6898 | 1.0 |
4.368 | 6.6 | 700 | 4.5734 | 1.0 |
4.2534 | 7.55 | 800 | 4.3091 | 1.0 |
4.0562 | 8.49 | 900 | 3.9265 | 0.9752 |
3.5949 | 9.43 | 1000 | 2.8375 | 0.6954 |
2.3633 | 10.38 | 1100 | 1.4117 | 0.2572 |
1.331 | 11.32 | 1200 | 0.9633 | 0.1877 |
0.9938 | 12.26 | 1300 | 0.7780 | 0.1505 |
0.8026 | 13.21 | 1400 | 0.6777 | 0.1499 |
0.7257 | 14.15 | 1500 | 0.5969 | 0.1356 |
0.6029 | 15.09 | 1600 | 0.5835 | 0.1203 |
0.5681 | 16.04 | 1700 | 0.5685 | 0.1325 |
0.5349 | 16.98 | 1800 | 0.5383 | 0.1270 |
0.4683 | 17.92 | 1900 | 0.5036 | 0.1126 |
0.4761 | 18.87 | 2000 | 0.5119 | 0.1173 |
0.4224 | 19.81 | 2100 | 0.5188 | 0.1277 |
0.4313 | 20.75 | 2200 | 0.5012 | 0.1180 |
0.3931 | 21.7 | 2300 | 0.4858 | 0.1200 |
0.3891 | 22.64 | 2400 | 0.4647 | 0.1120 |
0.3914 | 23.58 | 2500 | 0.4528 | 0.1144 |
0.3504 | 24.53 | 2600 | 0.4701 | 0.1044 |
0.3616 | 25.47 | 2700 | 0.4736 | 0.1048 |
0.3184 | 26.42 | 2800 | 0.4503 | 0.1084 |
0.3244 | 27.36 | 2900 | 0.4476 | 0.1024 |
0.3153 | 28.3 | 3000 | 0.4354 | 0.1101 |
0.3065 | 29.25 | 3100 | 0.4419 | 0.0965 |
0.3146 | 30.19 | 3200 | 0.4464 | 0.0997 |
0.3153 | 31.13 | 3300 | 0.4289 | 0.0859 |
0.269 | 32.08 | 3400 | 0.4388 | 0.1040 |
0.2974 | 33.02 | 3500 | 0.4407 | 0.1024 |
0.2943 | 33.96 | 3600 | 0.4631 | 0.0962 |
0.2728 | 34.91 | 3700 | 0.4320 | 0.0962 |
0.2816 | 35.85 | 3800 | 0.4459 | 0.0984 |
0.2647 | 36.79 | 3900 | 0.4249 | 0.0966 |
0.2788 | 37.74 | 4000 | 0.4118 | 0.0954 |
0.2786 | 38.68 | 4100 | 0.4420 | 0.1003 |
0.2669 | 39.62 | 4200 | 0.4459 | 0.1147 |
0.2569 | 40.57 | 4300 | 0.4257 | 0.0885 |
0.2616 | 41.51 | 4400 | 0.4151 | 0.0928 |
0.2724 | 42.45 | 4500 | 0.4109 | 0.0948 |
0.2332 | 43.4 | 4600 | 0.4189 | 0.0909 |
0.2225 | 44.34 | 4700 | 0.4212 | 0.0952 |
0.2431 | 45.28 | 4800 | 0.4214 | 0.0941 |
0.2369 | 46.23 | 4900 | 0.4097 | 0.0930 |
0.2326 | 47.17 | 5000 | 0.4093 | 0.0944 |
0.2019 | 48.11 | 5100 | 0.4003 | 0.0950 |
0.2074 | 49.06 | 5200 | 0.4333 | 0.0938 |
0.1947 | 50.0 | 5300 | 0.4136 | 0.0952 |
0.1965 | 50.94 | 5400 | 0.4271 | 0.0851 |
0.2035 | 51.89 | 5500 | 0.4170 | 0.0861 |
0.2072 | 52.83 | 5600 | 0.4090 | 0.0831 |
0.2022 | 53.77 | 5700 | 0.4258 | 0.0858 |
0.1807 | 54.72 | 5800 | 0.4159 | 0.0833 |
0.1912 | 55.66 | 5900 | 0.4286 | 0.0846 |
0.1805 | 56.6 | 6000 | 0.4354 | 0.0805 |
0.1906 | 57.55 | 6100 | 0.4126 | 0.0829 |
0.1799 | 58.49 | 6200 | 0.4310 | 0.0823 |
0.1861 | 59.43 | 6300 | 0.4363 | 0.0873 |
0.1823 | 60.38 | 6400 | 0.4247 | 0.0814 |
0.1951 | 61.32 | 6500 | 0.4414 | 0.0866 |
0.1852 | 62.26 | 6600 | 0.4278 | 0.0798 |
0.1877 | 63.21 | 6700 | 0.4242 | 0.0836 |
0.1818 | 64.15 | 6800 | 0.4220 | 0.0826 |
0.177 | 65.09 | 6900 | 0.4151 | 0.0861 |
0.1773 | 66.04 | 7000 | 0.4220 | 0.0856 |
0.1682 | 66.98 | 7100 | 0.4215 | 0.0813 |
0.1659 | 67.92 | 7200 | 0.4229 | 0.0807 |
0.1879 | 68.87 | 7300 | 0.4152 | 0.0819 |
0.1704 | 69.81 | 7400 | 0.4113 | 0.0839 |
0.155 | 70.75 | 7500 | 0.4139 | 0.0843 |
0.1563 | 71.7 | 7600 | 0.4159 | 0.0834 |
0.1489 | 72.64 | 7700 | 0.4119 | 0.0827 |
0.1501 | 73.58 | 7800 | 0.4113 | 0.0819 |
0.1363 | 74.53 | 7900 | 0.4110 | 0.0820 |
0.154 | 75.47 | 8000 | 0.4130 | 0.0788 |
0.1595 | 76.42 | 8100 | 0.4154 | 0.0789 |
0.1574 | 77.36 | 8200 | 0.4149 | 0.0808 |
0.1407 | 78.3 | 8300 | 0.4152 | 0.0827 |
0.1759 | 79.25 | 8400 | 0.4149 | 0.0829 |
0.1512 | 80.19 | 8500 | 0.4198 | 0.0831 |
0.1544 | 81.13 | 8600 | 0.4087 | 0.0786 |
0.1523 | 82.08 | 8700 | 0.4139 | 0.0797 |
0.1346 | 83.02 | 8800 | 0.4116 | 0.0782 |
0.1429 | 83.96 | 8900 | 0.4113 | 0.0782 |
0.135 | 84.91 | 9000 | 0.4119 | 0.0802 |
0.1461 | 85.85 | 9100 | 0.4162 | 0.0800 |
0.1389 | 86.79 | 9200 | 0.4166 | 0.0802 |
0.1458 | 87.74 | 9300 | 0.4182 | 0.0804 |
0.144 | 88.68 | 9400 | 0.4169 | 0.0792 |
0.1415 | 89.62 | 9500 | 0.4156 | 0.0792 |
0.1472 | 90.57 | 9600 | 0.4147 | 0.0792 |
0.1428 | 91.51 | 9700 | 0.4152 | 0.0796 |
0.1529 | 92.45 | 9800 | 0.4129 | 0.0790 |
0.1447 | 93.4 | 9900 | 0.4128 | 0.0795 |
0.1353 | 94.34 | 10000 | 0.4129 | 0.0797 |
0.1488 | 95.28 | 10100 | 0.4130 | 0.0796 |
0.1454 | 96.23 | 10200 | 0.4124 | 0.0793 |
0.16 | 97.17 | 10300 | 0.4122 | 0.0794 |
0.1533 | 98.11 | 10400 | 0.4123 | 0.0792 |
0.1313 | 99.06 | 10500 | 0.4120 | 0.0794 |
0.155 | 100.0 | 10600 | 0.4122 | 0.0792 |
Framework versions
- Transformers 4.35.2
- Pytorch 1.13.1+cu117
- Datasets 2.12.0
- Tokenizers 0.14.1
- Downloads last month
- 29
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for tuanio/w2v2_ablation_with_4-layer-ling_head-best_on_tp0.025_tl10_fp0.001_fl16
Base model
nguyenvulebinh/wav2vec2-base-vietnamese-250h