SetFit with BAAI/bge-base-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-base-en-v1.5 as the Sentence Transformer embedding model. A SetFitHead instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
undefined = Health 1 = Housing 2 = Defence 3 = Climate
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-base-en-v1.5
- Classification head: a SetFitHead instance
- Maximum Sequence Length: 512 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | F1 | Accuracy |
---|---|---|
all | 0.9667 | 0.9421 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("twright8/setfit_lobbying_classifier")
# Run inference
preds = model("Growth")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 39.4538 | 282 |
Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (4, 9)
- max_steps: -1
- sampling_strategy: undersampling
- body_learning_rate: (1.0797496673911536e-05, 3.457046714445997e-05)
- head_learning_rate: 0.0004470582121407239
- loss: CoSENTLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: True
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0002 | 1 | 2.097 | - |
0.0077 | 50 | 8.5514 | - |
0.0155 | 100 | 3.5635 | - |
0.0232 | 150 | 2.9266 | - |
0.0310 | 200 | 2.1173 | - |
0.0387 | 250 | 3.1002 | - |
0.0465 | 300 | 3.6942 | - |
0.0542 | 350 | 3.4905 | - |
0.0620 | 400 | 4.0804 | - |
0.0697 | 450 | 1.6071 | - |
0.0774 | 500 | 2.3018 | - |
0.0852 | 550 | 2.3876 | - |
0.0929 | 600 | 0.2511 | - |
0.1007 | 650 | 0.2435 | - |
0.1084 | 700 | 2.2596 | - |
0.1162 | 750 | 1.121 | - |
0.1239 | 800 | 0.0907 | - |
0.1317 | 850 | 0.2172 | - |
0.1394 | 900 | 3.06 | - |
0.1471 | 950 | 0.0074 | - |
0.1549 | 1000 | 0.457 | - |
0.1626 | 1050 | 0.0575 | - |
0.1704 | 1100 | 0.0002 | - |
0.1781 | 1150 | 0.0003 | - |
0.1859 | 1200 | 0.0047 | - |
0.1936 | 1250 | 0.0004 | - |
0.2014 | 1300 | 0.0006 | - |
0.2091 | 1350 | 0.0027 | - |
0.2169 | 1400 | 0.0004 | - |
0.2246 | 1450 | 0.0009 | - |
0.2323 | 1500 | 0.0006 | - |
0.2401 | 1550 | 0.0003 | - |
0.2478 | 1600 | 0.0077 | - |
0.2556 | 1650 | 0.0004 | - |
0.2633 | 1700 | 0.0003 | - |
0.2711 | 1750 | 0.0005 | - |
0.2788 | 1800 | 0.0004 | - |
0.2866 | 1850 | 0.0007 | - |
0.2943 | 1900 | 0.0009 | - |
0.3020 | 1950 | 0.0062 | - |
0.3098 | 2000 | 0.0003 | - |
0.3175 | 2050 | 0.0001 | - |
0.3253 | 2100 | 0.0685 | - |
0.3330 | 2150 | 0.0008 | - |
0.3408 | 2200 | 0.0 | - |
0.3485 | 2250 | 0.0004 | - |
0.3563 | 2300 | 0.0004 | - |
0.3640 | 2350 | 0.0002 | - |
0.3717 | 2400 | 0.0001 | - |
0.3795 | 2450 | 0.0004 | - |
0.3872 | 2500 | 0.0004 | - |
0.3950 | 2550 | 0.0001 | - |
0.4027 | 2600 | 0.0001 | - |
0.4105 | 2650 | 0.0001 | - |
0.4182 | 2700 | 0.0005 | - |
0.4260 | 2750 | 0.0002 | - |
0.4337 | 2800 | 0.0001 | - |
0.4414 | 2850 | 0.0003 | - |
0.4492 | 2900 | 0.0005 | - |
0.4569 | 2950 | 0.0014 | - |
0.4647 | 3000 | 0.0001 | - |
0.4724 | 3050 | 0.0001 | - |
0.4802 | 3100 | 0.0002 | - |
0.4879 | 3150 | 0.0 | - |
0.4957 | 3200 | 0.0006 | - |
0.5034 | 3250 | 0.0 | - |
0.5112 | 3300 | 0.0 | - |
0.5189 | 3350 | 0.0002 | - |
0.5266 | 3400 | 0.0001 | - |
0.5344 | 3450 | 0.0006 | - |
0.5421 | 3500 | 0.0002 | - |
0.5499 | 3550 | 0.0001 | - |
0.5576 | 3600 | 0.0001 | - |
0.5654 | 3650 | 0.0001 | - |
0.5731 | 3700 | 0.0 | - |
0.5809 | 3750 | 0.0002 | - |
0.5886 | 3800 | 0.0 | - |
0.5963 | 3850 | 0.0044 | - |
0.6041 | 3900 | 0.0002 | - |
0.6118 | 3950 | 0.0001 | - |
0.6196 | 4000 | 0.0003 | - |
0.6273 | 4050 | 0.0005 | - |
0.6351 | 4100 | 0.0002 | - |
0.6428 | 4150 | 0.0 | - |
0.6506 | 4200 | 0.0003 | - |
0.6583 | 4250 | 0.0 | - |
0.6660 | 4300 | 0.0001 | - |
0.6738 | 4350 | 0.0 | - |
0.6815 | 4400 | 0.0008 | - |
0.6893 | 4450 | 0.0 | - |
0.6970 | 4500 | 0.0004 | - |
0.7048 | 4550 | 0.0001 | - |
0.7125 | 4600 | 0.0 | - |
0.7203 | 4650 | 0.0 | - |
0.7280 | 4700 | 0.0 | - |
0.7357 | 4750 | 0.0001 | - |
0.7435 | 4800 | 0.0001 | - |
0.7512 | 4850 | 0.001 | - |
0.7590 | 4900 | 0.0001 | - |
0.7667 | 4950 | 0.0 | - |
0.7745 | 5000 | 0.0001 | - |
0.7822 | 5050 | 0.0 | - |
0.7900 | 5100 | 0.0018 | - |
0.7977 | 5150 | 0.0001 | - |
0.8055 | 5200 | 0.0 | - |
0.8132 | 5250 | 0.0003 | - |
0.8209 | 5300 | 0.0003 | - |
0.8287 | 5350 | 0.0003 | - |
0.8364 | 5400 | 0.0001 | - |
0.8442 | 5450 | 0.0001 | - |
0.8519 | 5500 | 0.0001 | - |
0.8597 | 5550 | 0.0001 | - |
0.8674 | 5600 | 0.0001 | - |
0.8752 | 5650 | 0.0 | - |
0.8829 | 5700 | 0.0003 | - |
0.8906 | 5750 | 0.0003 | - |
0.8984 | 5800 | 0.0001 | - |
0.9061 | 5850 | 0.0001 | - |
0.9139 | 5900 | 0.0002 | - |
0.9216 | 5950 | 0.0 | - |
0.9294 | 6000 | 0.0001 | - |
0.9371 | 6050 | 0.0 | - |
0.9449 | 6100 | 0.0 | - |
0.9526 | 6150 | 0.0001 | - |
0.9603 | 6200 | 0.0 | - |
0.9681 | 6250 | 0.0001 | - |
0.9758 | 6300 | 0.0002 | - |
0.9836 | 6350 | 0.0 | - |
0.9913 | 6400 | 0.0 | - |
0.9991 | 6450 | 0.0002 | - |
1.0 | 6456 | - | 1.3837 |
1.0068 | 6500 | 0.0001 | - |
1.0146 | 6550 | 0.0001 | - |
1.0223 | 6600 | 0.0002 | - |
1.0300 | 6650 | 0.0001 | - |
1.0378 | 6700 | 0.0005 | - |
1.0455 | 6750 | 0.0001 | - |
1.0533 | 6800 | 0.0001 | - |
1.0610 | 6850 | 0.0 | - |
1.0688 | 6900 | 0.0 | - |
1.0765 | 6950 | 0.0009 | - |
1.0843 | 7000 | 0.0 | - |
1.0920 | 7050 | 0.0032 | - |
1.0998 | 7100 | 0.0001 | - |
1.1075 | 7150 | 0.0001 | - |
1.1152 | 7200 | 0.0001 | - |
1.1230 | 7250 | 0.0 | - |
1.1307 | 7300 | 0.0001 | - |
1.1385 | 7350 | 0.0 | - |
1.1462 | 7400 | 0.0 | - |
1.1540 | 7450 | 0.0002 | - |
1.1617 | 7500 | 0.0 | - |
1.1695 | 7550 | 0.0427 | - |
1.1772 | 7600 | 0.0 | - |
1.1849 | 7650 | 0.0 | - |
1.1927 | 7700 | 0.0 | - |
1.2004 | 7750 | 0.0002 | - |
1.2082 | 7800 | 0.0 | - |
1.2159 | 7850 | 0.0 | - |
1.2237 | 7900 | 0.0 | - |
1.2314 | 7950 | 0.0 | - |
1.2392 | 8000 | 0.0001 | - |
1.2469 | 8050 | 0.0 | - |
1.2546 | 8100 | 0.0001 | - |
1.2624 | 8150 | 0.0 | - |
1.2701 | 8200 | 0.0 | - |
1.2779 | 8250 | 0.0 | - |
1.2856 | 8300 | 0.0 | - |
1.2934 | 8350 | 0.0 | - |
1.3011 | 8400 | 0.0 | - |
1.3089 | 8450 | 0.0 | - |
1.3166 | 8500 | 0.0 | - |
1.3243 | 8550 | 0.0001 | - |
1.3321 | 8600 | 0.0 | - |
1.3398 | 8650 | 0.0002 | - |
1.3476 | 8700 | 0.0 | - |
1.3553 | 8750 | 0.0006 | - |
1.3631 | 8800 | 0.0 | - |
1.3708 | 8850 | 0.0 | - |
1.3786 | 8900 | 0.0001 | - |
1.3863 | 8950 | 0.0 | - |
1.3941 | 9000 | 0.0001 | - |
1.4018 | 9050 | 0.0 | - |
1.4095 | 9100 | 0.0002 | - |
1.4173 | 9150 | 0.0 | - |
1.4250 | 9200 | 0.0 | - |
1.4328 | 9250 | 0.0 | - |
1.4405 | 9300 | 0.0 | - |
1.4483 | 9350 | 0.0 | - |
1.4560 | 9400 | 0.0 | - |
1.4638 | 9450 | 0.0 | - |
1.4715 | 9500 | 0.0 | - |
1.4792 | 9550 | 0.0 | - |
1.4870 | 9600 | 0.0 | - |
1.4947 | 9650 | 0.0005 | - |
1.5025 | 9700 | 0.0 | - |
1.5102 | 9750 | 0.0001 | - |
1.5180 | 9800 | 0.0001 | - |
1.5257 | 9850 | 0.0001 | - |
1.5335 | 9900 | 0.0 | - |
1.5412 | 9950 | 0.0 | - |
1.5489 | 10000 | 0.0 | - |
1.5567 | 10050 | 0.0 | - |
1.5644 | 10100 | 0.0001 | - |
1.5722 | 10150 | 0.0 | - |
1.5799 | 10200 | 0.0002 | - |
1.5877 | 10250 | 0.0001 | - |
1.5954 | 10300 | 0.0005 | - |
1.6032 | 10350 | 0.0 | - |
1.6109 | 10400 | 0.0 | - |
1.6186 | 10450 | 0.0003 | - |
1.6264 | 10500 | 0.0002 | - |
1.6341 | 10550 | 0.0 | - |
1.6419 | 10600 | 0.0 | - |
1.6496 | 10650 | 0.0001 | - |
1.6574 | 10700 | 0.0002 | - |
1.6651 | 10750 | 0.0002 | - |
1.6729 | 10800 | 0.0054 | - |
1.6806 | 10850 | 0.0005 | - |
1.6884 | 10900 | 0.0001 | - |
1.6961 | 10950 | 0.0 | - |
1.7038 | 11000 | 0.0 | - |
1.7116 | 11050 | 0.0001 | - |
1.7193 | 11100 | 0.0001 | - |
1.7271 | 11150 | 0.0 | - |
1.7348 | 11200 | 0.0001 | - |
1.7426 | 11250 | 0.0 | - |
1.7503 | 11300 | 0.0001 | - |
1.7581 | 11350 | 0.0004 | - |
1.7658 | 11400 | 0.0 | - |
1.7735 | 11450 | 0.0001 | - |
1.7813 | 11500 | 0.0 | - |
1.7890 | 11550 | 0.0 | - |
1.7968 | 11600 | 0.0 | - |
1.8045 | 11650 | 0.0 | - |
1.8123 | 11700 | 0.0001 | - |
1.8200 | 11750 | 0.0002 | - |
1.8278 | 11800 | 0.0 | - |
1.8355 | 11850 | 0.0001 | - |
1.8432 | 11900 | 0.0 | - |
1.8510 | 11950 | 0.0001 | - |
1.8587 | 12000 | 0.0 | - |
1.8665 | 12050 | 0.0 | - |
1.8742 | 12100 | 0.0 | - |
1.8820 | 12150 | 0.0001 | - |
1.8897 | 12200 | 0.0 | - |
1.8975 | 12250 | 0.0 | - |
1.9052 | 12300 | 0.0 | - |
1.9129 | 12350 | 0.0 | - |
1.9207 | 12400 | 0.0 | - |
1.9284 | 12450 | 0.0 | - |
1.9362 | 12500 | 0.0 | - |
1.9439 | 12550 | 0.0003 | - |
1.9517 | 12600 | 0.0001 | - |
1.9594 | 12650 | 0.0 | - |
1.9672 | 12700 | 0.0001 | - |
1.9749 | 12750 | 0.0 | - |
1.9827 | 12800 | 0.0 | - |
1.9904 | 12850 | 0.0 | - |
1.9981 | 12900 | 0.0001 | - |
2.0 | 12912 | - | 2.611 |
2.0059 | 12950 | 0.0 | - |
2.0136 | 13000 | 0.0001 | - |
2.0214 | 13050 | 0.0001 | - |
2.0291 | 13100 | 0.0 | - |
2.0369 | 13150 | 0.0 | - |
2.0446 | 13200 | 0.0001 | - |
2.0524 | 13250 | 0.0 | - |
2.0601 | 13300 | 0.0002 | - |
2.0678 | 13350 | 0.0 | - |
2.0756 | 13400 | 0.0 | - |
2.0833 | 13450 | 0.0001 | - |
2.0911 | 13500 | 0.0001 | - |
2.0988 | 13550 | 0.0003 | - |
2.1066 | 13600 | 0.0 | - |
2.1143 | 13650 | 0.0001 | - |
2.1221 | 13700 | 0.0001 | - |
2.1298 | 13750 | 0.0001 | - |
2.1375 | 13800 | 0.0001 | - |
2.1453 | 13850 | 0.0 | - |
2.1530 | 13900 | 0.0 | - |
2.1608 | 13950 | 0.0 | - |
2.1685 | 14000 | 0.0 | - |
2.1763 | 14050 | 0.0 | - |
2.1840 | 14100 | 0.0001 | - |
2.1918 | 14150 | 0.0 | - |
2.1995 | 14200 | 0.0 | - |
2.2072 | 14250 | 0.0001 | - |
2.2150 | 14300 | 0.0 | - |
2.2227 | 14350 | 0.0 | - |
2.2305 | 14400 | 0.0004 | - |
2.2382 | 14450 | 0.0001 | - |
2.2460 | 14500 | 0.0 | - |
2.2537 | 14550 | 0.0003 | - |
2.2615 | 14600 | 0.0 | - |
2.2692 | 14650 | 0.0001 | - |
2.2770 | 14700 | 0.0001 | - |
2.2847 | 14750 | 0.0 | - |
2.2924 | 14800 | 0.0 | - |
2.3002 | 14850 | 0.0005 | - |
2.3079 | 14900 | 0.0 | - |
2.3157 | 14950 | 0.0002 | - |
2.3234 | 15000 | 0.0 | - |
2.3312 | 15050 | 0.0 | - |
2.3389 | 15100 | 0.0001 | - |
2.3467 | 15150 | 0.0001 | - |
2.3544 | 15200 | 0.0002 | - |
2.3621 | 15250 | 0.0001 | - |
2.3699 | 15300 | 0.0 | - |
2.3776 | 15350 | 0.0 | - |
2.3854 | 15400 | 0.0002 | - |
2.3931 | 15450 | 0.0003 | - |
2.4009 | 15500 | 0.0 | - |
2.4086 | 15550 | 0.0 | - |
2.4164 | 15600 | 0.0 | - |
2.4241 | 15650 | 0.0001 | - |
2.4318 | 15700 | 0.0 | - |
2.4396 | 15750 | 0.0 | - |
2.4473 | 15800 | 0.0002 | - |
2.4551 | 15850 | 0.0 | - |
2.4628 | 15900 | 0.0 | - |
2.4706 | 15950 | 0.0 | - |
2.4783 | 16000 | 0.0 | - |
2.4861 | 16050 | 0.0001 | - |
2.4938 | 16100 | 0.0 | - |
2.5015 | 16150 | 0.0 | - |
2.5093 | 16200 | 0.0 | - |
2.5170 | 16250 | 0.0 | - |
2.5248 | 16300 | 0.0 | - |
2.5325 | 16350 | 0.0 | - |
2.5403 | 16400 | 0.0 | - |
2.5480 | 16450 | 0.0 | - |
2.5558 | 16500 | 0.0 | - |
2.5635 | 16550 | 0.0001 | - |
2.5713 | 16600 | 0.0 | - |
2.5790 | 16650 | 0.0 | - |
2.5867 | 16700 | 0.0 | - |
2.5945 | 16750 | 0.0 | - |
2.6022 | 16800 | 0.0009 | - |
2.6100 | 16850 | 0.0001 | - |
2.6177 | 16900 | 0.0 | - |
2.6255 | 16950 | 0.0001 | - |
2.6332 | 17000 | 0.0 | - |
2.6410 | 17050 | 0.0 | - |
2.6487 | 17100 | 0.0001 | - |
2.6564 | 17150 | 0.0 | - |
2.6642 | 17200 | 0.0 | - |
2.6719 | 17250 | 0.0 | - |
2.6797 | 17300 | 0.0 | - |
2.6874 | 17350 | 0.0004 | - |
2.6952 | 17400 | 0.0 | - |
2.7029 | 17450 | 0.0 | - |
2.7107 | 17500 | 0.0 | - |
2.7184 | 17550 | 0.0 | - |
2.7261 | 17600 | 0.0 | - |
2.7339 | 17650 | 0.0 | - |
2.7416 | 17700 | 0.0001 | - |
2.7494 | 17750 | 0.0 | - |
2.7571 | 17800 | 0.0 | - |
2.7649 | 17850 | 0.0001 | - |
2.7726 | 17900 | 0.0 | - |
2.7804 | 17950 | 0.0001 | - |
2.7881 | 18000 | 0.0001 | - |
2.7958 | 18050 | 0.0 | - |
2.8036 | 18100 | 0.0 | - |
2.8113 | 18150 | 0.0 | - |
2.8191 | 18200 | 0.0 | - |
2.8268 | 18250 | 0.0 | - |
2.8346 | 18300 | 0.0001 | - |
2.8423 | 18350 | 0.0 | - |
2.8501 | 18400 | 0.0 | - |
2.8578 | 18450 | 0.0 | - |
2.8656 | 18500 | 0.0 | - |
2.8733 | 18550 | 0.0 | - |
2.8810 | 18600 | 0.0 | - |
2.8888 | 18650 | 0.0 | - |
2.8965 | 18700 | 0.0 | - |
2.9043 | 18750 | 0.0 | - |
2.9120 | 18800 | 0.0001 | - |
2.9198 | 18850 | 0.0 | - |
2.9275 | 18900 | 0.0 | - |
2.9353 | 18950 | 0.0 | - |
2.9430 | 19000 | 0.0 | - |
2.9507 | 19050 | 0.0 | - |
2.9585 | 19100 | 0.0 | - |
2.9662 | 19150 | 0.0 | - |
2.9740 | 19200 | 0.0 | - |
2.9817 | 19250 | 0.0003 | - |
2.9895 | 19300 | 0.0001 | - |
2.9972 | 19350 | 0.0 | - |
3.0 | 19368 | - | 2.0845 |
3.0050 | 19400 | 0.0 | - |
3.0127 | 19450 | 0.0001 | - |
3.0204 | 19500 | 0.0 | - |
3.0282 | 19550 | 0.0 | - |
3.0359 | 19600 | 0.0 | - |
3.0437 | 19650 | 0.0 | - |
3.0514 | 19700 | 0.0 | - |
3.0592 | 19750 | 0.0 | - |
3.0669 | 19800 | 0.0001 | - |
3.0747 | 19850 | 0.0 | - |
3.0824 | 19900 | 0.0 | - |
3.0901 | 19950 | 0.0001 | - |
3.0979 | 20000 | 0.0 | - |
3.1056 | 20050 | 0.0 | - |
3.1134 | 20100 | 0.0 | - |
3.1211 | 20150 | 0.0001 | - |
3.1289 | 20200 | 0.0 | - |
3.1366 | 20250 | 0.0 | - |
3.1444 | 20300 | 0.0 | - |
3.1521 | 20350 | 0.0 | - |
3.1599 | 20400 | 0.0 | - |
3.1676 | 20450 | 0.0001 | - |
3.1753 | 20500 | 0.0 | - |
3.1831 | 20550 | 0.0001 | - |
3.1908 | 20600 | 0.0 | - |
3.1986 | 20650 | 0.0 | - |
3.2063 | 20700 | 0.0 | - |
3.2141 | 20750 | 0.0 | - |
3.2218 | 20800 | 0.0 | - |
3.2296 | 20850 | 0.0003 | - |
3.2373 | 20900 | 0.0 | - |
3.2450 | 20950 | 0.0 | - |
3.2528 | 21000 | 0.0 | - |
3.2605 | 21050 | 0.0 | - |
3.2683 | 21100 | 0.0001 | - |
3.2760 | 21150 | 0.0001 | - |
3.2838 | 21200 | 0.0 | - |
3.2915 | 21250 | 0.0 | - |
3.2993 | 21300 | 0.0 | - |
3.3070 | 21350 | 0.0 | - |
3.3147 | 21400 | 0.0 | - |
3.3225 | 21450 | 0.0001 | - |
3.3302 | 21500 | 0.0 | - |
3.3380 | 21550 | 0.0 | - |
3.3457 | 21600 | 0.0 | - |
3.3535 | 21650 | 0.0 | - |
3.3612 | 21700 | 0.0 | - |
3.3690 | 21750 | 0.0 | - |
3.3767 | 21800 | 0.0 | - |
3.3844 | 21850 | 0.0 | - |
3.3922 | 21900 | 0.0001 | - |
3.3999 | 21950 | 0.0 | - |
3.4077 | 22000 | 0.0 | - |
3.4154 | 22050 | 0.0001 | - |
3.4232 | 22100 | 0.0 | - |
3.4309 | 22150 | 0.0001 | - |
3.4387 | 22200 | 0.0 | - |
3.4464 | 22250 | 0.0 | - |
3.4542 | 22300 | 0.0 | - |
3.4619 | 22350 | 0.0001 | - |
3.4696 | 22400 | 0.0 | - |
3.4774 | 22450 | 0.0 | - |
3.4851 | 22500 | 0.0 | - |
3.4929 | 22550 | 0.0001 | - |
3.5006 | 22600 | 0.0002 | - |
3.5084 | 22650 | 0.0001 | - |
3.5161 | 22700 | 0.0 | - |
3.5239 | 22750 | 0.0001 | - |
3.5316 | 22800 | 0.0 | - |
3.5393 | 22850 | 0.0 | - |
3.5471 | 22900 | 0.0001 | - |
3.5548 | 22950 | 0.0 | - |
3.5626 | 23000 | 0.0 | - |
3.5703 | 23050 | 0.0 | - |
3.5781 | 23100 | 0.0 | - |
3.5858 | 23150 | 0.0001 | - |
3.5936 | 23200 | 0.0 | - |
3.6013 | 23250 | 0.0001 | - |
3.6090 | 23300 | 0.0001 | - |
3.6168 | 23350 | 0.0 | - |
3.6245 | 23400 | 0.0003 | - |
3.6323 | 23450 | 0.0 | - |
3.6400 | 23500 | 0.0 | - |
3.6478 | 23550 | 0.0001 | - |
3.6555 | 23600 | 0.0 | - |
3.6633 | 23650 | 0.0 | - |
3.6710 | 23700 | 0.0 | - |
3.6787 | 23750 | 0.0001 | - |
3.6865 | 23800 | 0.0 | - |
3.6942 | 23850 | 0.0001 | - |
3.7020 | 23900 | 0.0002 | - |
3.7097 | 23950 | 0.0 | - |
3.7175 | 24000 | 0.0 | - |
3.7252 | 24050 | 0.0 | - |
3.7330 | 24100 | 0.0 | - |
3.7407 | 24150 | 0.0001 | - |
3.7485 | 24200 | 0.0 | - |
3.7562 | 24250 | 0.0 | - |
3.7639 | 24300 | 0.0 | - |
3.7717 | 24350 | 0.0 | - |
3.7794 | 24400 | 0.0 | - |
3.7872 | 24450 | 0.0 | - |
3.7949 | 24500 | 0.0001 | - |
3.8027 | 24550 | 0.0001 | - |
3.8104 | 24600 | 0.0 | - |
3.8182 | 24650 | 0.0 | - |
3.8259 | 24700 | 0.0 | - |
3.8336 | 24750 | 0.0 | - |
3.8414 | 24800 | 0.0001 | - |
3.8491 | 24850 | 0.0 | - |
3.8569 | 24900 | 0.0 | - |
3.8646 | 24950 | 0.0 | - |
3.8724 | 25000 | 0.0 | - |
3.8801 | 25050 | 0.0 | - |
3.8879 | 25100 | 0.0 | - |
3.8956 | 25150 | 0.0001 | - |
3.9033 | 25200 | 0.0 | - |
3.9111 | 25250 | 0.0002 | - |
3.9188 | 25300 | 0.0001 | - |
3.9266 | 25350 | 0.0 | - |
3.9343 | 25400 | 0.0 | - |
3.9421 | 25450 | 0.0 | - |
3.9498 | 25500 | 0.0001 | - |
3.9576 | 25550 | 0.0 | - |
3.9653 | 25600 | 0.0 | - |
3.9730 | 25650 | 0.0001 | - |
3.9808 | 25700 | 0.0 | - |
3.9885 | 25750 | 0.0 | - |
3.9963 | 25800 | 0.0 | - |
4.0 | 25824 | - | 2.3576 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.3.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 19
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for twright8/setfit_lobbying_classifier
Base model
BAAI/bge-base-en-v1.5Evaluation results
- F1 on Unknowntest set self-reported0.967
- Accuracy on Unknowntest set self-reported0.942