llama3-8b-instruct-text-to-sql
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the generator dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
Training results
Framework versions
- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.2.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
Train jupyter notebook
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "tyfeng1997/llama3-8b-instruct-text-to-sql"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are an text to SQL query translator. Users will ask you questions in English and you will generate a SQL query based on the provided SCHEMA.\nSCHEMA:\nCREATE TABLE match_season (College VARCHAR, POSITION VARCHAR)"},
{"role": "user", "content": "Which college have both players with position midfielder and players with position defender?"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0]
print(tokenizer.decode(response, skip_special_tokens=True))
#
#system
#You are an text to SQL query translator. Users will ask you questions in English and you will generate a SQL query based on the provided SCHEMA.
#SCHEMA:
#CREATE TABLE match_season (College VARCHAR, POSITION VARCHAR)
#user
#Which college have both players with position midfielder and players with position defender?
#assistant
#SELECT College FROM match_season WHERE POSITION = "Midfielder" INTERSECT SELECT College FROM match_season WHERE POSITION = "Defender"
#
- Downloads last month
- 23
Model tree for tyfeng1997/llama3-8b-instruct-text-to-sql
Base model
meta-llama/Meta-Llama-3-8B-Instruct