lmind_nq_train6000_eval6489_v1_docidx_v3_Qwen_Qwen1.5-4B_lora2
This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3 dataset. It achieves the following results on the evaluation set:
- Loss: 5.3392
- Accuracy: 0.4286
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
1.9569 | 0.9985 | 341 | 0.4736 | 3.0300 |
1.8799 | 2.0 | 683 | 0.468 | 3.0993 |
1.7649 | 2.9985 | 1024 | 0.4650 | 3.2750 |
1.6077 | 4.0 | 1366 | 0.4625 | 3.4406 |
1.4321 | 4.9985 | 1707 | 0.4586 | 3.6500 |
1.2382 | 6.0 | 2049 | 0.4562 | 3.8598 |
1.0525 | 6.9985 | 2390 | 0.4541 | 4.0638 |
0.8607 | 8.0 | 2732 | 0.4515 | 4.2389 |
0.7099 | 8.9985 | 3073 | 0.4516 | 4.3484 |
0.5823 | 9.9854 | 3410 | 0.4488 | 4.5794 |
0.4641 | 10.9985 | 3751 | 4.7090 | 0.4495 |
0.3755 | 12.0 | 4093 | 4.9454 | 0.4354 |
0.3235 | 12.9985 | 4434 | 5.0624 | 0.4379 |
0.2691 | 14.0 | 4776 | 5.0957 | 0.4345 |
0.2394 | 14.9985 | 5117 | 5.1831 | 0.4368 |
0.2112 | 16.0 | 5459 | 5.3223 | 0.4326 |
0.1994 | 16.9985 | 5800 | 5.3839 | 0.4301 |
0.1834 | 18.0 | 6142 | 5.4236 | 0.4286 |
0.1709 | 18.9985 | 6483 | 5.4840 | 0.4291 |
0.166 | 19.9854 | 6820 | 5.3392 | 0.4286 |
Framework versions
- PEFT 0.5.0
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3_Qwen_Qwen1.5-4B_lora2
Base model
Qwen/Qwen1.5-4BDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3_Qwen_Qwen1.5-4B_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3self-reported0.429