lmind_nq_train6000_eval6489_v1_qa_Qwen_Qwen1.5-4B_3e-4_lora2
This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_nq_train6000_eval6489_v1_qa dataset. It achieves the following results on the evaluation set:
- Loss: 2.3067
- Accuracy: 0.5581
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.7168 | 0.9973 | 187 | 1.6089 | 0.5754 |
1.3336 | 2.0 | 375 | 1.6442 | 0.5728 |
0.9813 | 2.9973 | 562 | 1.7657 | 0.5690 |
0.7483 | 4.0 | 750 | 1.9240 | 0.566 |
0.6395 | 4.9973 | 937 | 2.0308 | 0.5644 |
0.5836 | 6.0 | 1125 | 2.0914 | 0.5626 |
0.5559 | 6.9973 | 1312 | 2.1673 | 0.5617 |
0.5386 | 8.0 | 1500 | 2.1641 | 0.5619 |
0.5022 | 8.9973 | 1687 | 2.1993 | 0.5623 |
0.5035 | 10.0 | 1875 | 2.2047 | 0.5633 |
0.5013 | 10.9973 | 2062 | 2.2971 | 0.5616 |
0.5063 | 12.0 | 2250 | 2.2050 | 0.5618 |
0.5048 | 12.9973 | 2437 | 2.2624 | 0.5597 |
0.506 | 14.0 | 2625 | 2.3161 | 0.5598 |
0.511 | 14.9973 | 2812 | 2.2551 | 0.5554 |
0.5163 | 16.0 | 3000 | 2.3024 | 0.5578 |
0.4861 | 16.9973 | 3187 | 2.2554 | 0.5585 |
0.4925 | 18.0 | 3375 | 2.2402 | 0.5579 |
0.4927 | 18.9973 | 3562 | 2.2989 | 0.5570 |
0.4868 | 19.9467 | 3740 | 2.3067 | 0.5581 |
Framework versions
- PEFT 0.5.0
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_qa_Qwen_Qwen1.5-4B_3e-4_lora2
Base model
Qwen/Qwen1.5-4BDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_qa_Qwen_Qwen1.5-4B_3e-4_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_qaself-reported0.558