uer's picture
Update README.md
3504511
---
language: zh
datasets: CLUECorpusSmall
widget:
- text: "最近一趟去北京的[MASK]几点发车"
---
# Chinese word-based RoBERTa Miniatures
## Model description
This is the set of 5 Chinese word-based RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). Besides, the models could also be pre-trained by [TencentPretrain](https://github.com/Tencent/TencentPretrain) introduced in [this paper](https://arxiv.org/abs/2212.06385), which inherits UER-py to support models with parameters above one billion, and extends it to a multimodal pre-training framework.
Most Chinese pre-trained weights are based on Chinese character. Compared with character-based models, word-based models are faster (because of shorter sequence length) and have better performance according to our experimental results. To this end, we released the 5 Chinese word-based RoBERTa models of different sizes. In order to facilitate users in reproducing the results, we used a publicly available corpus and word segmentation tool, and provided all training details.
You can download the 5 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below:
| | Link |
| -------- | :-----------------------: |
| **word-based RoBERTa-Tiny** | [**L=2/H=128 (Tiny)**][2_128] |
| **word-based RoBERTa-Mini** | [**L=4/H=256 (Mini)**][4_256] |
| **word-based RoBERTa-Small** | [**L=4/H=512 (Small)**][4_512] |
| **word-based RoBERTa-Medium** | [**L=8/H=512 (Medium)**][8_512] |
| **word-based RoBERTa-Base** | [**L=12/H=768 (Base)**][12_768] |
Compared with [char-based models](https://huggingface.co/uer/chinese_roberta_L-2_H-128), word-based models achieve better results in most cases. Here are scores on the devlopment set of six Chinese tasks:
| Model | Score | book_review | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) |
| -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: |
| RoBERTa-Tiny(char) | 72.3 | 83.4 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 |
| **RoBERTa-Tiny(word)** | **74.4(+2.1)** | **86.7** | **93.2** | **82.0** | **66.4** | **58.2** | **59.6** |
| RoBERTa-Mini(char) | 75.9 | 85.7 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 |
| **RoBERTa-Mini(word)** | **76.9(+1.0)** | **88.5** | **94.1** | **85.4** | **66.9** | **59.2** | **67.3** |
| RoBERTa-Small(char) | 76.9 | 87.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 |
| **RoBERTa-Small(word)** | **78.4(+1.5)** | **89.7** | **94.7** | **87.4** | **67.6** | **60.9** | **69.8** |
| RoBERTa-Medium(char) | 78.0 | 88.7 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 |
| **RoBERTa-Medium(word)** | **79.1(+1.1)** | **90.0** | **95.1** | **88.0** | **67.8** | **60.6** | **73.0** |
| RoBERTa-Base(char) | 79.7 | 90.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 |
| **RoBERTa-Base(word)** | **80.4(+0.7)** | **91.1** | **95.7** | **89.4** | **68.0** | **61.5** | **76.8** |
For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128:
- epochs: 3, 5, 8
- batch sizes: 32, 64
- learning rates: 3e-5, 1e-4, 3e-4
## How to use
You can use this model directly with a pipeline for masked language modeling (take the case of word-based RoBERTa-Medium):
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='uer/roberta-medium-word-chinese-cluecorpussmall')
>>> unmasker("[MASK]的首都是北京。")
[
{'sequence': '中国 的首都是北京。',
'score': 0.21525809168815613,
'token': 2873,
'token_str': '中国'},
{'sequence': '北京 的首都是北京。',
'score': 0.15194718539714813,
'token': 9502,
'token_str': '北京'},
{'sequence': '我们 的首都是北京。',
'score': 0.08854265511035919,
'token': 4215,
'token_str': '我们'},
{'sequence': '美国 的首都是北京。',
'score': 0.06808705627918243,
'token': 7810,
'token_str': '美国'},
{'sequence': '日本 的首都是北京。',
'score': 0.06071401759982109,
'token': 7788,
'token_str': '日本'}
]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AlbertTokenizer, BertModel
tokenizer = AlbertTokenizer.from_pretrained('uer/roberta-medium-word-chinese-cluecorpussmall')
model = BertModel.from_pretrained("uer/roberta-medium-word-chinese-cluecorpussmall")
text = "用你喜欢的任何文本替换我。"
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AlbertTokenizer, TFBertModel
tokenizer = AlbertTokenizer.from_pretrained('uer/roberta-medium-word-chinese-cluecorpussmall')
model = TFBertModel.from_pretrained("uer/roberta-medium-word-chinese-cluecorpussmall")
text = "用你喜欢的任何文本替换我。"
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
Since BertTokenizer does not support sentencepiece, AlbertTokenizer is used here.
## Training data
[CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. Google's [sentencepiece](https://github.com/google/sentencepiece) is used for word segmentation. The sentencepiece model is trained on CLUECorpusSmall corpus:
```
>>> import sentencepiece as spm
>>> spm.SentencePieceTrainer.train(input='cluecorpussmall.txt',
model_prefix='cluecorpussmall_spm',
vocab_size=100000,
max_sentence_length=1024,
max_sentencepiece_length=6,
user_defined_symbols=['[MASK]','[unused1]','[unused2]',
'[unused3]','[unused4]','[unused5]','[unused6]',
'[unused7]','[unused8]','[unused9]','[unused10]'],
pad_id=0,
pad_piece='[PAD]',
unk_id=1,
unk_piece='[UNK]',
bos_id=2,
bos_piece='[CLS]',
eos_id=3,
eos_piece='[SEP]',
train_extremely_large_corpus=True
)
```
## Training procedure
Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes.
Taking the case of word-based RoBERTa-Medium
Stage1:
```
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
--spm_model_path models/cluecorpussmall_spm.model \
--dataset_path cluecorpussmall_word_seq128_dataset.pt \
--processes_num 32 --seq_length 128 \
--dynamic_masking --data_processor mlm
```
```
python3 pretrain.py --dataset_path cluecorpussmall_word_seq128_dataset.pt \
--spm_model_path models/cluecorpussmall_spm.model \
--config_path models/bert/medium_config.json \
--output_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
--learning_rate 1e-4 --batch_size 64 \
--data_processor mlm --target mlm
```
Stage2:
```
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
--spm_model_path models/cluecorpussmall_spm.model \
--dataset_path cluecorpussmall_word_seq512_dataset.pt \
--processes_num 32 --seq_length 512 \
--dynamic_masking --data_processor mlm
```
```
python3 pretrain.py --dataset_path cluecorpussmall_word_seq512_dataset.pt \
--spm_model_path models/cluecorpussmall_spm.model \
--pretrained_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin-1000000 \
--config_path models/bert/medium_config.json \
--output_model_path models/cluecorpussmall_word_roberta_medium_seq512_model.bin \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
--learning_rate 5e-5 --batch_size 16 \
--data_processor mlm --target mlm
```
Finally, we convert the pre-trained model into Huggingface's format:
```
python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_word_roberta_medium_seq512_model.bin-250000 \
--output_model_path pytorch_model.bin \
--layers_num 8 --type mlm
```
### BibTeX entry and citation info
```
@article{devlin2018bert,
title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding},
author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
journal={arXiv preprint arXiv:1810.04805},
year={2018}
}
@article{turc2019,
title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models},
author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
journal={arXiv preprint arXiv:1908.08962v2 },
year={2019}
}
@article{zhao2019uer,
title={UER: An Open-Source Toolkit for Pre-training Models},
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
journal={EMNLP-IJCNLP 2019},
pages={241},
year={2019}
}
@article{zhao2023tencentpretrain,
title={TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities},
author={Zhao, Zhe and Li, Yudong and Hou, Cheng and Zhao, Jing and others},
journal={ACL 2023},
pages={217},
year={2023}
```
[2_128]:https://huggingface.co/uer/roberta-tiny-word-chinese-cluecorpussmall
[4_256]:https://huggingface.co/uer/roberta-mini-word-chinese-cluecorpussmall
[4_512]:https://huggingface.co/uer/roberta-small-word-chinese-cluecorpussmall
[8_512]:https://huggingface.co/uer/roberta-medium-word-chinese-cluecorpussmall
[12_768]:https://huggingface.co/uer/roberta-base-word-chinese-cluecorpussmall