YAML Metadata Error: "datasets[1]" with value "stackexchange(pets, cooking, gardening, diy, crafts)" is not valid. If possible, use a dataset id from https://hf.co/datasets.

Work by Frederico Vicente & Diogo Tavares. We finetuned BART Large for the task of generative question answering. It was trained on eli5, askScience and stackexchange using the following forums: pets, cooking, gardening, diy, crafts.

Usage


from transformers import (
      BartForConditionalGeneration,
      BartTokenizer
)
import torch
import json

def read_json_file_2_dict(filename, store_dir='.'):
    with open(f'{store_dir}/{filename}', 'r', encoding='utf-8') as file:
        return json.load(file)

def get_device():
    # If there's a GPU available...
    if torch.cuda.is_available():
        device = torch.device("cuda")
        n_gpus = torch.cuda.device_count()
        first_gpu = torch.cuda.get_device_name(0)

        print(f'There are {n_gpus} GPU(s) available.')
        print(f'GPU gonna be used: {first_gpu}')
    else:
        print('No GPU available, using the CPU instead.')
        device = torch.device("cpu")
    return device

model_name = 'unlisboa/bart_qa_assistant'
tokenizer = BartTokenizer.from_pretrained(model_name)
device = get_device()
model = BartForConditionalGeneration.from_pretrained(model_name).to(device)
model.eval()
                                                                                                                                                          
model_input = tokenizer(question, truncation=True, padding=True, return_tensors="pt")
generated_answers_encoded = model.generate(input_ids=model_input["input_ids"].to(device),attention_mask=model_input["attention_mask"].to(device),
                                                                                      force_words_ids=None,
                                                                                      min_length=1,
                                                                                      max_length=100,
                                                                                      do_sample=True,
                                                                                      early_stopping=True,
                                                                                      num_beams=4,
                                                                                      temperature=1.0,
                                                                                      top_k=None,
                                                                                      top_p=None,
                                                                                      # eos_token_id=tokenizer.eos_token_id,
                                                                                      no_repeat_ngram_size=2,
                                                                                      num_return_sequences=1,
                                                                                      return_dict_in_generate=True,
                                                                                      output_scores=True)
response = tokenizer.batch_decode(generated_answers_encoded['sequences'], skip_special_tokens=True,clean_up_tokenization_spaces=True)    
print(response)

Have fun!

Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using unlisboa/bart_qa_assistant 1