Rose-2x7B / README.md
heyuan's picture
Update README.md
f097d44 verified
---
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- maywell/PiVoT-0.1-Starling-LM-RP
- WizardLM/WizardMath-7B-V1.1
base_model:
- maywell/PiVoT-0.1-Starling-LM-RP
- WizardLM/WizardMath-7B-V1.1
---
# Rose-2x7B
Rose-2x7B is a Mixure of Experts (MoE) made with the following models using [Mergekit](https://github.com/cg123/mergekit):
* [maywell/PiVoT-0.1-Starling-LM-RP](https://huggingface.co/maywell/PiVoT-0.1-Starling-LM-RP)
* [WizardLM/WizardMath-7B-V1.1](https://huggingface.co/WizardLM/WizardMath-7B-V1.1)
```bash
mergekit-moe mergekit_moe.yaml merge --copy-tokenizer --device cuda --low-cpu-memory
```
## 🧩 Configuration
```yaml
base_model: uproai/ros-7b-v1
experts:
- source_model: maywell/PiVoT-0.1-Starling-LM-RP
positive_prompts:
- "storywriting"
- "write"
- "scene"
- "story"
- "character"
- source_model: WizardLM/WizardMath-7B-V1.1
positive_prompts:
- "reason"
- "math"
- "mathematics"
- "solve"
- "count"
tokenizer_source: union
```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "uproai/Rose-2x7B"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```