kf-deberta-multitask
This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. You can check the training recipes on GitHub.
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["μλ
νμΈμ?", "νκ΅μ΄ λ¬Έμ₯ μλ² λ©μ μν λ²νΈ λͺ¨λΈμ
λλ€."]
model = SentenceTransformer("upskyy/kf-deberta-multitask")
embeddings = model.encode(sentences)
print(embeddings)
Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ["μλ
νμΈμ?", "νκ΅μ΄ λ¬Έμ₯ μλ² λ©μ μν λ²νΈ λͺ¨λΈμ
λλ€."]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("upskyy/kf-deberta-multitask")
model = AutoModel.from_pretrained("upskyy/kf-deberta-multitask")
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Evaluation Results
KorSTS, KorNLI νμ΅ λ°μ΄ν°μ μΌλ‘ λ©ν° νμ€ν¬ νμ΅μ μ§νν ν KorSTS νκ° λ°μ΄ν°μ μΌλ‘ νκ°ν κ²°κ³Όμ λλ€.
- Cosine Pearson: 85.75
- Cosine Spearman: 86.25
- Manhattan Pearson: 84.80
- Manhattan Spearman: 85.27
- Euclidean Pearson: 84.79
- Euclidean Spearman: 85.25
- Dot Pearson: 82.93
- Dot Spearman: 82.86
model | cosine_pearson | cosine_spearman | euclidean_pearson | euclidean_spearman | manhattan_pearson | manhattan_spearman | dot_pearson | dot_spearman |
---|---|---|---|---|---|---|---|---|
kf-deberta-multitask | 85.75 | 86.25 | 84.79 | 85.25 | 84.80 | 85.27 | 82.93 | 82.86 |
ko-sroberta-multitask | 84.77 | 85.6 | 83.71 | 84.40 | 83.70 | 84.38 | 82.42 | 82.33 |
ko-sbert-multitask | 84.13 | 84.71 | 82.42 | 82.66 | 82.41 | 82.69 | 80.05 | 79.69 |
ko-sroberta-base-nli | 82.83 | 83.85 | 82.87 | 83.29 | 82.88 | 83.28 | 80.34 | 79.69 |
ko-sbert-nli | 82.24 | 83.16 | 82.19 | 82.31 | 82.18 | 82.3 | 79.3 | 78.78 |
ko-sroberta-sts | 81.84 | 81.82 | 81.15 | 81.25 | 81.14 | 81.25 | 79.09 | 78.54 |
ko-sbert-sts | 81.55 | 81.23 | 79.94 | 79.79 | 79.9 | 79.75 | 76.02 | 75.31 |
Training
The model was trained with the parameters:
DataLoader:
sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader
of length 4442 with parameters:
{'batch_size': 128}
Loss:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
with parameters:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 719 with parameters:
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
Parameters of the fit()-Method:
{
"epochs": 10,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 719,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
Citing & Authors
@proceedings{jeon-etal-2023-kfdeberta,
title = {KF-DeBERTa: Financial Domain-specific Pre-trained Language Model},
author = {Eunkwang Jeon, Jungdae Kim, Minsang Song, and Joohyun Ryu},
booktitle = {Proceedings of the 35th Annual Conference on Human and Cognitive Language Technology},
moth = {oct},
year = {2023},
publisher = {Korean Institute of Information Scientists and Engineers},
url = {http://www.hclt.kr/symp/?lnb=conference},
pages = {143--148},
}
@article{ham2020kornli,
title={KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding},
author={Ham, Jiyeon and Choe, Yo Joong and Park, Kyubyong and Choi, Ilji and Soh, Hyungjoon},
journal={arXiv preprint arXiv:2004.03289},
year={2020}
}
- Downloads last month
- 960