Hubert-common_voice-ja-demo-kana-debug-50epochs-cosine

This model is a fine-tuned version of rinna/japanese-hubert-base on the MOZILLA-FOUNDATION/COMMON_VOICE_13_0 - JA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6997
  • Wer: 1.0
  • Cer: 0.3178

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 12500
  • num_epochs: 50.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
No log 0.2660 100 43.2254 1.5295 5.8209
No log 0.5319 200 42.4473 1.5328 5.2847
No log 0.7979 300 40.4745 1.1351 1.8916
No log 1.0638 400 33.1315 1.0 0.9999
31.9649 1.3298 500 20.9238 1.0 0.9999
31.9649 1.5957 600 17.6015 1.0 0.9999
31.9649 1.8617 700 16.8689 1.0 0.9999
31.9649 2.1277 800 16.4459 1.0 0.9999
31.9649 2.3936 900 16.0021 1.0 0.9999
14.4801 2.6596 1000 15.5383 1.0 0.9999
14.4801 2.9255 1100 15.0419 1.0 0.9999
14.4801 3.1915 1200 14.5001 1.0 0.9999
14.4801 3.4574 1300 13.9273 1.0 0.9999
14.4801 3.7234 1400 13.3177 1.0 0.9999
12.1603 3.9894 1500 12.6793 1.0 0.9999
12.1603 4.2553 1600 12.0061 1.0 0.9999
12.1603 4.5213 1700 11.3136 1.0 0.9999
12.1603 4.7872 1800 10.5996 1.0 0.9999
12.1603 5.0532 1900 9.8780 1.0 0.9999
9.51 5.3191 2000 9.1535 1.0 0.9999
9.51 5.5851 2100 8.4424 1.0 0.9999
9.51 5.8511 2200 7.7545 1.0 0.9999
9.51 6.1170 2300 7.1014 1.0 0.9999
9.51 6.3830 2400 6.4994 1.0 0.9999
6.6851 6.6489 2500 5.9542 1.0 0.9999
6.6851 6.9149 2600 5.4843 1.0 0.9999
6.6851 7.1809 2700 5.0985 1.0 0.9999
6.6851 7.4468 2800 4.7872 1.0 0.9999
6.6851 7.7128 2900 4.5565 1.0 0.9999
4.7438 7.9787 3000 4.3885 1.0 0.9999
4.7438 8.2447 3100 4.2609 1.0 0.9999
4.7438 8.5106 3200 4.1909 1.0 0.9999
4.7438 8.7766 3300 4.1393 1.0 0.9999
4.7438 9.0426 3400 4.1096 1.0 0.9999
4.1247 9.3085 3500 4.0906 1.0 0.9999
4.1247 9.5745 3600 4.0835 1.0 0.9999
4.1247 9.8404 3700 4.0710 1.0 0.9999
4.1247 10.1064 3800 4.0627 1.0 0.9999
4.1247 10.3723 3900 4.0562 1.0 0.9999
4.039 10.6383 4000 4.0456 1.0 0.9999
4.039 10.9043 4100 4.0376 1.0 0.9999
4.039 11.1702 4200 4.0261 1.0 0.9999
4.039 11.4362 4300 4.0129 1.0 0.9999
4.039 11.7021 4400 4.0102 1.0 0.9999
3.9934 11.9681 4500 3.9765 1.0 0.9999
3.9934 12.2340 4600 3.9292 1.0 0.9999
3.9934 12.5 4700 3.8597 1.0 0.9999
3.9934 12.7660 4800 3.7626 1.0 0.9999
3.9934 13.0319 4900 3.6057 1.0 0.9999
3.7495 13.2979 5000 3.4160 1.0 0.9999
3.7495 13.5638 5100 3.1636 1.0 0.9998
3.7495 13.8298 5200 2.7153 1.0 0.7268
3.7495 14.0957 5300 2.4242 1.0 0.5731
3.7495 14.3617 5400 2.1946 1.0 0.5367
2.6537 14.6277 5500 2.0187 1.0 0.4742
2.6537 14.8936 5600 1.8818 1.0 0.4641
2.6537 15.1596 5700 1.7484 1.0 0.4355
2.6537 15.4255 5800 1.6397 1.0 0.4217
2.6537 15.6915 5900 1.5507 0.9998 0.4047
1.7492 15.9574 6000 1.4586 1.0 0.3999
1.7492 16.2234 6100 1.3908 1.0 0.3913
1.7492 16.4894 6200 1.3182 1.0 0.3849
1.7492 16.7553 6300 1.2754 1.0 0.3739
1.7492 17.0213 6400 1.2096 1.0 0.3744
1.3182 17.2872 6500 1.1599 1.0 0.3713
1.3182 17.5532 6600 1.1126 1.0 0.3673
1.3182 17.8191 6700 1.0685 1.0 0.3642
1.3182 18.0851 6800 1.0331 1.0 0.3606
1.3182 18.3511 6900 1.0006 1.0 0.3581
1.06 18.6170 7000 0.9663 1.0 0.3570
1.06 18.8830 7100 0.9409 1.0 0.3541
1.06 19.1489 7200 0.9141 0.9998 0.3527
1.06 19.4149 7300 0.8919 1.0 0.3515
1.06 19.6809 7400 0.8824 0.9998 0.3516
0.8957 19.9468 7500 0.8395 1.0 0.3477
0.8957 20.2128 7600 0.8356 1.0 0.3476
0.8957 20.4787 7700 0.8232 1.0 0.3506
0.8957 20.7447 7800 0.7880 1.0 0.3443
0.8957 21.0106 7900 0.7795 1.0 0.3453
0.7596 21.2766 8000 0.7670 1.0 0.3435
0.7596 21.5426 8100 0.7575 1.0 0.3426
0.7596 21.8085 8200 0.7344 1.0 0.3415
0.7596 22.0745 8300 0.7258 1.0 0.3413
0.7596 22.3404 8400 0.7230 0.9998 0.3410
0.6631 22.6064 8500 0.7223 1.0 0.3390
0.6631 22.8723 8600 0.7035 0.9998 0.3391
0.6631 23.1383 8700 0.7013 1.0 0.3370
0.6631 23.4043 8800 0.6926 1.0 0.3365
0.6631 23.6702 8900 0.6865 1.0 0.3368
0.6032 23.9362 9000 0.6834 1.0 0.3372
0.6032 24.2021 9100 0.6720 0.9998 0.3356
0.6032 24.4681 9200 0.6614 1.0 0.3353
0.6032 24.7340 9300 0.6691 1.0 0.3352
0.6032 25.0 9400 0.6571 0.9998 0.3328
0.544 25.2660 9500 0.6790 1.0 0.3360
0.544 25.5319 9600 0.6571 1.0 0.3326
0.544 25.7979 9700 0.6508 1.0 0.3344
0.544 26.0638 9800 0.6482 1.0 0.3327
0.544 26.3298 9900 0.6354 0.9998 0.3312
0.4943 26.5957 10000 0.6280 0.9998 0.3308
0.4943 26.8617 10100 0.6407 1.0 0.3299
0.4943 27.1277 10200 0.6388 1.0 0.3311
0.4943 27.3936 10300 0.6483 1.0 0.3302
0.4943 27.6596 10400 0.6255 0.9998 0.3311
0.4613 27.9255 10500 0.6355 1.0 0.3308
0.4613 28.1915 10600 0.6293 1.0 0.3300
0.4613 28.4574 10700 0.6333 1.0 0.3288
0.4613 28.7234 10800 0.6207 1.0 0.3279
0.4613 28.9894 10900 0.6218 0.9998 0.3281
0.4151 29.2553 11000 0.6301 1.0 0.3295
0.4151 29.5213 11100 0.6189 0.9996 0.3300
0.4151 29.7872 11200 0.6250 0.9998 0.3279
0.4151 30.0532 11300 0.6211 1.0 0.3268
0.4151 30.3191 11400 0.6195 1.0 0.3278
0.3895 30.5851 11500 0.6265 0.9998 0.3270
0.3895 30.8511 11600 0.6332 1.0 0.3263
0.3895 31.1170 11700 0.6232 0.9998 0.3253
0.3895 31.3830 11800 0.6281 1.0 0.3262
0.3895 31.6489 11900 0.6212 1.0 0.3258
0.3686 31.9149 12000 0.6368 0.9998 0.3266
0.3686 32.1809 12100 0.6276 0.9998 0.3299
0.3686 32.4468 12200 0.6513 1.0 0.3333
0.3686 32.7128 12300 0.6249 0.9996 0.3229
0.3686 32.9787 12400 0.6232 1.0 0.3262
0.3415 33.2447 12500 0.6144 1.0 0.3240
0.3415 33.5106 12600 0.6243 1.0 0.3269
0.3415 33.7766 12700 0.6344 1.0 0.3249
0.3415 34.0426 12800 0.6372 1.0 0.3236
0.3415 34.3085 12900 0.6399 1.0 0.3247
0.3167 34.5745 13000 0.6329 0.9996 0.3231
0.3167 34.8404 13100 0.6251 0.9998 0.3249
0.3167 35.1064 13200 0.6508 0.9998 0.3234
0.3167 35.3723 13300 0.6473 1.0 0.3219
0.3167 35.6383 13400 0.7159 0.9998 0.3232
0.3006 35.9043 13500 0.6520 0.9998 0.3279
0.3006 36.1702 13600 0.6568 0.9998 0.3225
0.3006 36.4362 13700 0.6568 1.0 0.3221
0.3006 36.7021 13800 0.6531 0.9998 0.3211
0.3006 36.9681 13900 0.6393 1.0 0.3218
0.2769 37.2340 14000 0.6671 0.9996 0.3229
0.2769 37.5 14100 0.6516 0.9998 0.3227
0.2769 37.7660 14200 0.6632 1.0 0.3218
0.2769 38.0319 14300 0.6799 1.0 0.3220
0.2769 38.2979 14400 0.6666 1.0 0.3220
0.2611 38.5638 14500 0.6486 1.0 0.3209
0.2611 38.8298 14600 0.6458 1.0 0.3209
0.2611 39.0957 14700 0.7051 1.0 0.3208
0.2611 39.3617 14800 0.6990 0.9998 0.3217
0.2611 39.6277 14900 0.6779 1.0 0.3216
0.2399 39.8936 15000 0.6609 1.0 0.3215
0.2399 40.1596 15100 0.6820 1.0 0.3208
0.2399 40.4255 15200 0.6618 1.0 0.3202
0.2399 40.6915 15300 0.6736 0.9998 0.3190
0.2399 40.9574 15400 0.6720 1.0 0.3196
0.2251 41.2234 15500 0.6697 1.0 0.3190
0.2251 41.4894 15600 0.6754 1.0 0.3214
0.2251 41.7553 15700 0.6777 1.0 0.3193
0.2251 42.0213 15800 0.6920 1.0 0.3195
0.2251 42.2872 15900 0.7009 1.0 0.3189
0.2181 42.5532 16000 0.6936 1.0 0.3184
0.2181 42.8191 16100 0.6941 1.0 0.3191
0.2181 43.0851 16200 0.6952 1.0 0.3190
0.2181 43.3511 16300 0.7078 1.0 0.3193
0.2181 43.6170 16400 0.6847 0.9998 0.3183
0.2019 43.8830 16500 0.6928 1.0 0.3203
0.2019 44.1489 16600 0.6941 1.0 0.3189
0.2019 44.4149 16700 0.6907 1.0 0.3180
0.2019 44.6809 16800 0.6850 0.9998 0.3183
0.2019 44.9468 16900 0.6956 1.0 0.3181
0.1938 45.2128 17000 0.6916 0.9998 0.3178
0.1938 45.4787 17100 0.6940 0.9996 0.3178
0.1938 45.7447 17200 0.6952 0.9998 0.3190
0.1938 46.0106 17300 0.7024 1.0 0.3189
0.1938 46.2766 17400 0.7070 0.9998 0.3188
0.1908 46.5426 17500 0.7046 0.9998 0.3182
0.1908 46.8085 17600 0.7046 0.9996 0.3183
0.1908 47.0745 17700 0.7030 1.0 0.3181
0.1908 47.3404 17800 0.6982 0.9998 0.3181
0.1908 47.6064 17900 0.7023 1.0 0.3177
0.1805 47.8723 18000 0.6954 1.0 0.3180
0.1805 48.1383 18100 0.6969 0.9998 0.3179
0.1805 48.4043 18200 0.6992 0.9998 0.3177
0.1805 48.6702 18300 0.6975 1.0 0.3176
0.1805 48.9362 18400 0.6991 0.9998 0.3177
0.1817 49.2021 18500 0.6993 0.9998 0.3175
0.1817 49.4681 18600 0.7004 0.9998 0.3177
0.1817 49.7340 18700 0.7000 1.0 0.3178
0.1817 50.0 18800 0.7000 0.9996 0.3176

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
36
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for utakumi/Hubert-common_voice-ja-demo-kana-debug-50epochs-cosine

Finetuned
(25)
this model

Evaluation results