Hubert-noisy_common_voice_debug
This model is a fine-tuned version of rinna/japanese-hubert-base on the ORIGINAL_NOISY_COMMON_VOICE - JA dataset. It achieves the following results on the evaluation set:
- Loss: 0.9787
- Wer: 1.0
- Cer: 0.3145
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 12500
- num_epochs: 30.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
No log | 0.2660 | 100 | 12.0822 | 1.1570 | 1.0539 |
No log | 0.5319 | 200 | 5.8789 | 1.0 | 0.9817 |
No log | 0.7979 | 300 | 5.3627 | 1.0 | 0.9817 |
No log | 1.0638 | 400 | 4.9316 | 1.0 | 0.9817 |
6.372 | 1.3298 | 500 | 4.4556 | 1.0 | 0.9817 |
6.372 | 1.5957 | 600 | 3.9890 | 1.0 | 0.9817 |
6.372 | 1.8617 | 700 | 3.5734 | 1.0 | 0.9817 |
6.372 | 2.1277 | 800 | 3.2932 | 1.0 | 0.9817 |
6.372 | 2.3936 | 900 | 3.1536 | 1.0 | 0.9817 |
3.4101 | 2.6596 | 1000 | 3.0484 | 1.0 | 0.9817 |
3.4101 | 2.9255 | 1100 | 2.8470 | 1.0 | 0.9808 |
3.4101 | 3.1915 | 1200 | 2.5211 | 1.0 | 0.8702 |
3.4101 | 3.4574 | 1300 | 2.0354 | 1.0 | 0.5518 |
3.4101 | 3.7234 | 1400 | 1.6780 | 1.0 | 0.4414 |
2.3222 | 3.9894 | 1500 | 1.5039 | 1.0 | 0.4312 |
2.3222 | 4.2553 | 1600 | 1.3419 | 1.0 | 0.3965 |
2.3222 | 4.5213 | 1700 | 1.2054 | 1.0 | 0.3686 |
2.3222 | 4.7872 | 1800 | 1.0588 | 1.0 | 0.3321 |
2.3222 | 5.0532 | 1900 | 0.9546 | 1.0 | 0.3158 |
1.2343 | 5.3191 | 2000 | 0.9042 | 1.0 | 0.3106 |
1.2343 | 5.5851 | 2100 | 0.8747 | 1.0 | 0.3088 |
1.2343 | 5.8511 | 2200 | 0.8224 | 1.0 | 0.2972 |
1.2343 | 6.1170 | 2300 | 0.8101 | 1.0 | 0.2996 |
1.2343 | 6.3830 | 2400 | 0.7892 | 1.0 | 0.2970 |
0.8716 | 6.6489 | 2500 | 0.7661 | 1.0 | 0.2915 |
0.8716 | 6.9149 | 2600 | 0.7654 | 1.0 | 0.2886 |
0.8716 | 7.1809 | 2700 | 0.7677 | 1.0 | 0.2898 |
0.8716 | 7.4468 | 2800 | 0.7528 | 1.0 | 0.2861 |
0.8716 | 7.7128 | 2900 | 0.7433 | 1.0 | 0.2880 |
0.7324 | 7.9787 | 3000 | 0.7498 | 1.0 | 0.2877 |
0.7324 | 8.2447 | 3100 | 0.7267 | 1.0 | 0.2827 |
0.7324 | 8.5106 | 3200 | 0.7319 | 1.0 | 0.2813 |
0.7324 | 8.7766 | 3300 | 0.7478 | 1.0 | 0.2882 |
0.7324 | 9.0426 | 3400 | 0.7337 | 1.0 | 0.2815 |
0.6486 | 9.3085 | 3500 | 0.7341 | 1.0 | 0.2851 |
0.6486 | 9.5745 | 3600 | 0.7419 | 1.0 | 0.2803 |
0.6486 | 9.8404 | 3700 | 0.7033 | 0.9998 | 0.2773 |
0.6486 | 10.1064 | 3800 | 0.7327 | 1.0 | 0.2829 |
0.6486 | 10.3723 | 3900 | 0.7554 | 0.9998 | 0.2855 |
0.6034 | 10.6383 | 4000 | 0.7361 | 1.0 | 0.2841 |
0.6034 | 10.9043 | 4100 | 0.7459 | 1.0 | 0.2833 |
0.6034 | 11.1702 | 4200 | 0.7384 | 1.0 | 0.2801 |
0.6034 | 11.4362 | 4300 | 0.7337 | 1.0 | 0.2776 |
0.6034 | 11.7021 | 4400 | 0.7572 | 1.0 | 0.2819 |
0.5687 | 11.9681 | 4500 | 0.7522 | 1.0 | 0.2824 |
0.5687 | 12.2340 | 4600 | 0.7491 | 1.0 | 0.2789 |
0.5687 | 12.5 | 4700 | 0.7485 | 1.0 | 0.2832 |
0.5687 | 12.7660 | 4800 | 0.7623 | 1.0 | 0.2849 |
0.5687 | 13.0319 | 4900 | 0.7829 | 1.0 | 0.2859 |
0.5255 | 13.2979 | 5000 | 0.7819 | 1.0 | 0.2820 |
0.5255 | 13.5638 | 5100 | 0.7783 | 0.9998 | 0.2824 |
0.5255 | 13.8298 | 5200 | 0.7653 | 1.0 | 0.2840 |
0.5255 | 14.0957 | 5300 | 0.7816 | 1.0 | 0.2822 |
0.5255 | 14.3617 | 5400 | 0.7608 | 1.0 | 0.2824 |
0.5016 | 14.6277 | 5500 | 0.7712 | 0.9998 | 0.2841 |
0.5016 | 14.8936 | 5600 | 0.7712 | 1.0 | 0.2864 |
0.5016 | 15.1596 | 5700 | 0.8153 | 0.9996 | 0.2851 |
0.5016 | 15.4255 | 5800 | 0.8161 | 0.9998 | 0.2852 |
0.5016 | 15.6915 | 5900 | 0.7911 | 1.0 | 0.2883 |
0.4821 | 15.9574 | 6000 | 0.7926 | 1.0 | 0.2823 |
0.4821 | 16.2234 | 6100 | 0.8147 | 1.0 | 0.2867 |
0.4821 | 16.4894 | 6200 | 0.7700 | 1.0 | 0.2826 |
0.4821 | 16.7553 | 6300 | 0.8119 | 1.0 | 0.2910 |
0.4821 | 17.0213 | 6400 | 0.8355 | 1.0 | 0.2846 |
0.4503 | 17.2872 | 6500 | 0.7936 | 0.9998 | 0.2859 |
0.4503 | 17.5532 | 6600 | 0.7976 | 0.9998 | 0.2952 |
0.4503 | 17.8191 | 6700 | 0.8274 | 0.9998 | 0.2902 |
0.4503 | 18.0851 | 6800 | 0.9034 | 0.9998 | 0.2885 |
0.4503 | 18.3511 | 6900 | 0.8066 | 0.9998 | 0.2882 |
0.4435 | 18.6170 | 7000 | 0.8495 | 1.0 | 0.2921 |
0.4435 | 18.8830 | 7100 | 0.8448 | 0.9998 | 0.2896 |
0.4435 | 19.1489 | 7200 | 0.8774 | 1.0 | 0.2904 |
0.4435 | 19.4149 | 7300 | 0.8293 | 0.9998 | 0.2973 |
0.4435 | 19.6809 | 7400 | 0.8038 | 1.0 | 0.2925 |
0.4457 | 19.9468 | 7500 | 0.8062 | 0.9998 | 0.2908 |
0.4457 | 20.2128 | 7600 | 0.8740 | 1.0 | 0.2918 |
0.4457 | 20.4787 | 7700 | 0.8489 | 1.0 | 0.2977 |
0.4457 | 20.7447 | 7800 | 0.8606 | 1.0 | 0.2973 |
0.4457 | 21.0106 | 7900 | 0.8141 | 0.9998 | 0.2926 |
0.4252 | 21.2766 | 8000 | 0.8832 | 0.9998 | 0.2984 |
0.4252 | 21.5426 | 8100 | 0.8590 | 0.9998 | 0.2945 |
0.4252 | 21.8085 | 8200 | 0.8304 | 0.9998 | 0.2940 |
0.4252 | 22.0745 | 8300 | 0.8734 | 0.9998 | 0.2974 |
0.4252 | 22.3404 | 8400 | 0.8417 | 0.9998 | 0.2930 |
0.418 | 22.6064 | 8500 | 0.9387 | 1.0 | 0.2993 |
0.418 | 22.8723 | 8600 | 0.8810 | 1.0 | 0.2996 |
0.418 | 23.1383 | 8700 | 0.9090 | 1.0 | 0.3074 |
0.418 | 23.4043 | 8800 | 0.8993 | 0.9998 | 0.3107 |
0.418 | 23.6702 | 8900 | 0.8724 | 1.0 | 0.3033 |
0.424 | 23.9362 | 9000 | 0.8895 | 0.9998 | 0.3042 |
0.424 | 24.2021 | 9100 | 0.8863 | 1.0 | 0.3014 |
0.424 | 24.4681 | 9200 | 0.9255 | 0.9998 | 0.3112 |
0.424 | 24.7340 | 9300 | 0.9398 | 0.9998 | 0.3011 |
0.424 | 25.0 | 9400 | 0.8763 | 0.9998 | 0.3071 |
0.4122 | 25.2660 | 9500 | 0.9353 | 1.0 | 0.3090 |
0.4122 | 25.5319 | 9600 | 0.9382 | 1.0 | 0.3128 |
0.4122 | 25.7979 | 9700 | 0.9295 | 0.9998 | 0.3102 |
0.4122 | 26.0638 | 9800 | 0.9286 | 0.9998 | 0.3092 |
0.4122 | 26.3298 | 9900 | 0.9141 | 1.0 | 0.3014 |
0.4146 | 26.5957 | 10000 | 0.9426 | 1.0 | 0.3126 |
0.4146 | 26.8617 | 10100 | 0.8652 | 1.0 | 0.3032 |
0.4146 | 27.1277 | 10200 | 0.9289 | 1.0 | 0.3105 |
0.4146 | 27.3936 | 10300 | 0.9459 | 1.0 | 0.3103 |
0.4146 | 27.6596 | 10400 | 0.9137 | 0.9998 | 0.3124 |
0.416 | 27.9255 | 10500 | 0.9305 | 1.0 | 0.3100 |
0.416 | 28.1915 | 10600 | 0.9589 | 1.0 | 0.3071 |
0.416 | 28.4574 | 10700 | 0.9276 | 0.9998 | 0.3061 |
0.416 | 28.7234 | 10800 | 0.9259 | 1.0 | 0.3078 |
0.416 | 28.9894 | 10900 | 0.9287 | 1.0 | 0.3150 |
0.4078 | 29.2553 | 11000 | 0.9346 | 0.9998 | 0.3166 |
0.4078 | 29.5213 | 11100 | 0.9559 | 1.0 | 0.3165 |
0.4078 | 29.7872 | 11200 | 0.9670 | 1.0 | 0.3173 |
Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 27
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.