|
--- |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
datasets: |
|
- jondurbin/airoboros-2.2 |
|
- Open-Orca/OpenOrca |
|
- garage-bAInd/Open-Platypus |
|
- WizardLM/WizardLM_evol_instruct_V2_196k |
|
- TokenBender/python_eval_instruct_51k |
|
tags: |
|
- llama-2 |
|
- code |
|
license: llama2 |
|
model-index: |
|
- name: SpeechlessCoder |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: openai_humaneval |
|
name: HumanEval |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 52.439 |
|
verified: false |
|
--- |
|
|
|
<p><h1> speechless-coding-7b-16k-tora </h1></p> |
|
|
|
Use the following dataset to fine-tune llm_agents/tora-code-7b-v1.0 in order to improve the model's reasoning and planning abilities. |
|
|
|
context window length: 16,384 |
|
prompt_type = "alpaca" |
|
max_tokens > 128 && < 16384 |
|
> |
|
Total 177,333 samples 316 MB |
|
- jondurbin/airoboros-2.2: Filter categories related to coding, reasoning and planning. 21,923 samples. |
|
- Open-Orca/OpenOrca: Filter the 'cot' category in 1M GPT4 dataset. 62,973 samples. |
|
- garage-bAInd/Open-Platypus: 100%, 22,760 samples. |
|
- WizardLM/WizardLM_evol_instruct_V2_196k: Coding coversation part. 30,081 samples |
|
- TokenBender/python_eval_instruct_51k: “python” in output .39,596 samples |
|
|
|
|
|
50 samples/T=0.2/MaxTokens=512/Top_P=0.95 |
|
|
|
Code: https://github.com/uukuguy/speechless |
|
|
|
## How to Prompt the Model |
|
This model accepts the Alpaca instruction format. |
|
|
|
For example: |
|
``` |
|
You are an intelligent programming assistant. |
|
|
|
### Instruction: |
|
Implement a linked list in C++ |
|
|
|
### Response: |
|
``` |
|
|
|
|
|
## HumanEval |
|
|
|
| Metric | Value | |
|
| --- | --- | |
|
| humaneval-python | 52.44 | |
|
|
|
[Big Code Models Leaderboard](https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard) |
|
|
|
CodeLlama-34B-Python: 53.29 |
|
|
|
CodeLlama-34B-Instruct: 50.79 |
|
|
|
CodeLlama-13B-Instruct: 50.6 |
|
|
|
CodeLlama-34B: 45.11 |
|
|
|
CodeLlama-13B-Python: 42.89 |
|
|
|
CodeLlama-13B: 35.07 |
|
|
|
## MultiPL-E |
|
|
|
| Metric | Value | |
|
| --- | --- | |
|
| python | 55.96 | |
|
| java | 37.84 | |
|
| javascript | 46.93 | |
|
| cpp | 37.48 | |
|
| rust | 29.01 | |
|
| go | 28.99 | |
|
| sh | 12.11 | |
|
| julia | 31.47 | |
|
| typescript | 47.80 | |
|
|
|
## LMEval |
|
|
|
[Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
| Metric | Value | |
|
| --- | --- | |
|
| ARC | | |
|
| HellaSwag | | |
|
| MMLU | | |
|
| TruthfulQA | | |
|
| Average | | |
|
|
|
## Parameters |
|
|
|
| | | |
|
|------ | ------ | |
|
| lr | 2e-4 | |
|
| lr_scheduler_type | cosine | |
|
| weight_decay | 0.0 | |
|
| optim | paged_adamw_8bit | |
|
| flash_attention | True | |
|
| rerope | False | |
|
| max_new_tokens | 16384 | |
|
| num_train_epochs | 2 | |
|
| bits | 4 | |
|
| lora_r | 64 | |
|
| lora_alpha | 256 | |
|
| lora_dropout | 0.05 | |
|
| double_quant | True | |
|
| quant_type | nf4 | |
|
| dataset_format | sharegpt | |
|
| mini_batch_size | 2 | |
|
| grandient_accumulation_steps | 32 | |
|
| bf16 | True | |
|
|
|
A100-40G x 4 |
|
|