whisper-tiny-en-US

This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4990
  • Wer Ortho: 0.2965
  • Wer: 0.2960

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 100
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0244 0.8969 50 0.5282 0.3012 0.3005
0.0178 1.7937 100 0.5213 0.2985 0.2986
0.0171 2.6906 150 0.5147 0.2979 0.2967
0.0121 3.5874 200 0.5092 0.2925 0.2915
0.0071 4.4843 250 0.5057 0.3072 0.3069
0.0073 5.3812 300 0.5034 0.2945 0.2941
0.003 6.2780 350 0.5014 0.2945 0.2934
0.0036 7.1749 400 0.5003 0.2972 0.2967
0.0034 8.0717 450 0.4997 0.2965 0.2960
0.0034 8.9686 500 0.4990 0.2965 0.2960

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
37.8M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for vakanksha2002/whisper-tiny-en-US

Finetuned
(1271)
this model

Dataset used to train vakanksha2002/whisper-tiny-en-US

Evaluation results