vasilis's picture
updates model
bd3411a
metadata
language: fi
datasets:
  - common_voice
  - CSS10 finnish: Single Speaker Speech Dataset
metrics:
  - wer
  - cer
tags:
  - audio
  - automatic-speech-recognition
  - speech
  - xlsr-fine-tuning-week
license: apache-2.0
model-index:
  - name: V XLSR Wav2Vec2 Large 53 - finnish
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice fi
          type: common_voice
          args: fi
        metrics:
          - name: Test WER
            type: wer
            value: 38.335242
          - name: Test CER
            type: cer
            value: 6.552408

Wav2Vec2-Large-XLSR-53-finnish

Fine-tuned facebook/wav2vec2-large-xlsr-53 on finnish using the Common Voice and CSS10 finnish: Single Speaker Speech Dataset. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "el", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.

processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-finnish") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-finnish") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on the finnish test data of Common Voice.

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "fi", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-finnish")
model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-finnish")
model.to("cuda")

chars_to_ignore_regex = "[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']"  # TODO: adapt this list to include all special characters you removed from the data
replacements = {"…": "", "–": ''}

resampler = {
    48_000: torchaudio.transforms.Resample(48_000, 16_000),
    44100: torchaudio.transforms.Resample(44100, 16_000),
    32000: torchaudio.transforms.Resample(32000, 16_000)
}


# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
    for key, value in replacements.items():
        batch["sentence"] = batch["sentence"].replace(key, value)
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler[sampling_rate](speech_array).squeeze().numpy()
    return batch


test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
print("CER: {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) for entry in result["pred_strings"]], references=[" ".join(list(entry)) for entry in result["sentence"]])))

Test Result: 38.335242 %

Training

The Common Voice train dataset was used for training. Also all of CSS10 Finnish was used using the normalized transcripts. After 20000 steps the models was finetuned using the common voice train and validation sets for 2000 steps more.