vasista22's picture
Update README.md
878cdb8
---
language:
- kn
license: apache-2.0
tags:
- whisper-event
metrics:
- wer
model-index:
- name: Whisper Kannada Tiny - Vasista Sai Lodagala
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: kn_in
split: test
metrics:
- type: wer
value: 13.38
name: WER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Kannada Tiny
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Kannada data available from multiple publicly available ASR corpuses.
It has been fine-tuned as a part of the Whisper fine-tuning sprint.
**NOTE:** The code used to train this model is available for re-use in the [whisper-finetune](https://github.com/vasistalodagala/whisper-finetune) repository.
## Usage
In order to evaluate this model on an entire dataset, the evaluation codes available in the [whisper-finetune](https://github.com/vasistalodagala/whisper-finetune) repository can be used.
The same repository also provides the scripts for faster inference using whisper-jax.
In order to infer a single audio file using this model, the following code snippet can be used:
```python
>>> import torch
>>> from transformers import pipeline
>>> # path to the audio file to be transcribed
>>> audio = "/path/to/audio.format"
>>> device = "cuda:0" if torch.cuda.is_available() else "cpu"
>>> transcribe = pipeline(task="automatic-speech-recognition", model="vasista22/whisper-kannada-tiny", chunk_length_s=30, device=device)
>>> transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(language="kn", task="transcribe")
>>> print('Transcription: ', transcribe(audio)["text"])
```
For faster inference of whisper models, the [whisper-jax](https://github.com/sanchit-gandhi/whisper-jax) library can be used. Please follow the necessary installation steps as mentioned [here](https://github.com/vasistalodagala/whisper-finetune#faster-evaluation-with-whisper-jax), before using the following code snippet:
```python
>>> import jax.numpy as jnp
>>> from whisper_jax import FlaxWhisperForConditionalGeneration, FlaxWhisperPipline
>>> # path to the audio file to be transcribed
>>> audio = "/path/to/audio.format"
>>> transcribe = FlaxWhisperPipline("vasista22/whisper-kannada-tiny", batch_size=16)
>>> transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(language="kn", task="transcribe")
>>> print('Transcription: ', transcribe(audio)["text"])
```
## Training and evaluation data
Training Data:
- [IISc-MILE Kannada ASR Corpus](https://www.openslr.org/126/)
- [ULCA ASR Corpus](https://github.com/Open-Speech-EkStep/ULCA-asr-dataset-corpus#kannada-labelled-total-duration-is-60891-hours)
- [Shrutilipi ASR Corpus](https://ai4bharat.org/shrutilipi)
- [Google/Fleurs Train+Dev set](https://huggingface.co/datasets/google/fleurs)
Evaluation Data:
- [Google/Fleurs Test Set](https://huggingface.co/datasets/google/fleurs)
- [IISc-MILE Test Set](https://www.openslr.org/126/)
- [OpenSLR](https://www.openslr.org/79/)
## Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 88
- eval_batch_size: 88
- seed: 22
- optimizer: adamw_bnb_8bit
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- training_steps: 15008 (terminated upon convergence. Initially set to 51570 steps)
- mixed_precision_training: True
## Acknowledgement
This work was done at [Speech Lab, IIT Madras](https://asr.iitm.ac.in/).
The compute resources for this work were funded by "Bhashini: National Language translation Mission" project of the Ministry of Electronics and Information Technology (MeitY), Government of India.