roberta-clinc150-1 / README.md
vedantjumle's picture
Training in progress epoch 9
adc2f38
---
license: mit
base_model: roberta-base
tags:
- generated_from_keras_callback
model-index:
- name: vedantjumle/roberta-clinc150-1
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# vedantjumle/roberta-clinc150-1
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.6273
- Validation Loss: 0.5739
- Train Accuracy: 0.9778
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4424, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.6278 | 0.5740 | 0.9778 | 0 |
| 0.6488 | 0.5741 | 0.9778 | 1 |
| 0.6353 | 0.5740 | 0.9778 | 2 |
| 0.6388 | 0.5692 | 0.9778 | 3 |
| 0.6336 | 0.5719 | 0.9778 | 4 |
| 0.6290 | 0.5739 | 0.9778 | 5 |
| 0.6370 | 0.5682 | 0.9778 | 6 |
| 0.6405 | 0.5717 | 0.9778 | 7 |
| 0.6635 | 0.5715 | 0.9778 | 8 |
| 0.6273 | 0.5739 | 0.9778 | 9 |
### Framework versions
- Transformers 4.34.0
- TensorFlow 2.13.0
- Datasets 2.14.5
- Tokenizers 0.14.1