vedantjumle/xlnet-1

This model is a fine-tuned version of xlnet-large-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0053
  • Validation Loss: 0.4856
  • Train Accuracy: 0.9033
  • Epoch: 93

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 6000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
5.1007 4.9565 0.0133 0
5.0503 4.8870 0.0367 1
4.9095 4.6674 0.07 2
4.5990 4.1706 0.2033 3
4.0403 3.4616 0.4267 4
3.2648 2.6274 0.6033 5
2.5315 1.8851 0.71 6
1.8938 1.4084 0.8033 7
1.3599 1.0397 0.84 8
0.9752 0.7675 0.8667 9
0.6995 0.6496 0.8667 10
0.5132 0.5293 0.89 11
0.3848 0.4618 0.9 12
0.2920 0.4516 0.8733 13
0.2286 0.4097 0.8967 14
0.1789 0.3951 0.9 15
0.1512 0.3845 0.8933 16
0.1320 0.3741 0.9067 17
0.1116 0.3553 0.9067 18
0.0935 0.3710 0.9 19
0.0886 0.3831 0.9067 20
0.0723 0.3490 0.91 21
0.0641 0.3448 0.91 22
0.0601 0.3682 0.9 23
0.0590 0.3716 0.9033 24
0.0491 0.3619 0.91 25
0.0404 0.3728 0.9033 26
0.0394 0.3624 0.91 27
0.0394 0.3249 0.9167 28
0.0387 0.3465 0.91 29
0.0456 0.3580 0.91 30
0.0323 0.3645 0.9133 31
0.0308 0.3633 0.9133 32
0.0312 0.3658 0.9033 33
0.0244 0.3621 0.9067 34
0.0255 0.3705 0.9067 35
0.0238 0.3618 0.9067 36
0.0222 0.3603 0.9067 37
0.0230 0.3678 0.9067 38
0.0272 0.4125 0.9033 39
0.0318 0.3973 0.91 40
0.0262 0.3871 0.9067 41
0.0299 0.3935 0.9033 42
0.0285 0.4192 0.9067 43
0.0206 0.4100 0.9133 44
0.0188 0.4106 0.9067 45
0.0179 0.4355 0.91 46
0.0151 0.4091 0.9133 47
0.0138 0.4046 0.9167 48
0.0128 0.4063 0.91 49
0.0174 0.4197 0.91 50
0.0247 0.4015 0.9133 51
0.0159 0.4290 0.91 52
0.0161 0.4353 0.9033 53
0.0163 0.4568 0.9033 54
0.0153 0.4428 0.8933 55
0.0145 0.4273 0.9033 56
0.0129 0.4315 0.8967 57
0.0107 0.4265 0.8933 58
0.0173 0.4303 0.8967 59
0.0150 0.4386 0.8933 60
0.0166 0.4308 0.91 61
0.0135 0.4533 0.8933 62
0.0096 0.4507 0.9 63
0.0091 0.4371 0.9033 64
0.0089 0.4383 0.9033 65
0.0083 0.4450 0.9033 66
0.0080 0.4487 0.9033 67
0.0082 0.4500 0.9 68
0.0077 0.4528 0.9033 69
0.0075 0.4516 0.9 70
0.0073 0.4474 0.9 71
0.0222 0.4517 0.9 72
0.0082 0.4778 0.9033 73
0.0072 0.4674 0.9 74
0.0072 0.4641 0.8967 75
0.0068 0.4537 0.9 76
0.0066 0.4565 0.8967 77
0.0063 0.4551 0.9033 78
0.0078 0.4614 0.8967 79
0.0107 0.4598 0.8967 80
0.0069 0.4536 0.9 81
0.0107 0.4594 0.9033 82
0.0072 0.4353 0.9033 83
0.0112 0.4995 0.9 84
0.0063 0.4875 0.8967 85
0.0060 0.4859 0.9033 86
0.0061 0.4804 0.9 87
0.0058 0.4811 0.9033 88
0.0058 0.4805 0.9033 89
0.0057 0.4811 0.9033 90
0.0057 0.4865 0.9033 91
0.0055 0.4864 0.9033 92
0.0053 0.4856 0.9033 93

Framework versions

  • Transformers 4.34.0
  • TensorFlow 2.13.0
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for vedantjumle/xlnet-1

Finetuned
(18)
this model