File size: 7,816 Bytes
96353a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class SqeezeExcite(nn.Module):
def __init__(self, channel, reduction_ratio = 16):
super(SqeezeExcite,self).__init__()
self.GAP = nn.AdaptiveAvgPool2d(1)
self.mlp = nn.Sequential(
nn.Linear(channel, channel//reduction_ratio, bias = False),
nn.ReLU(inplace=True),
nn.Linear(channel//reduction_ratio,channel,bias = False),
nn.Sigmoid()
)
def forward(self,x):
b,c,_,_ = x.size()
out = self.GAP(x).view(b,c)
out = self.mlp(out).view(b,c,1,1)
return x * out.expand_as(x)
class ECA(nn.Module):
# https://wandb.ai/diganta/ECANet-sweep/reports/Efficient-Channel-Attention--VmlldzozNzgwOTE
def __init__(self,channels, b = 1, gamma = 2):
super(ECA, self).__init__()
self.GAP = nn.AdaptiveAvgPool2d(1)
self.channels = channels
self.b = b
self.gamma = gamma
self.conv = nn.Conv1d(1, 1, kernel_size=self.adaptive_kernel(),padding = (self.adaptive_kernel()-1)//2, bias = False)
self.sigmoid = nn.Sigmoid()
def forward(self,x):
attn = self.GAP(x)
attn = self.conv(attn.squeeze(-1).transpose(-1,-2)).transpose(-1,-2).unsqueeze(-1)
attn = self.sigmoid(attn)
return x * attn.expand_as(x)
def adaptive_kernel(self):
k = int(abs(math.log2(self.channels)/self.gamma) + self.b)
ksize = k if k%2 else k+1
return ksize
class UNetConvBlock(nn.Module):
def __init__(self, in_channel, out_channel, ca_layer):
super(UNetConvBlock, self).__init__()
block = []
block.append(nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=1, padding=1))
block.append(nn.PReLU())
block.append(nn.Conv2d(out_channel, out_channel, kernel_size=3, padding=1, stride=1))
block.append(nn.PReLU())
if ca_layer:
block.append(ECA(out_channel))
self.block = nn.Sequential(*block)
def forward(self, x):
out = self.block(x)
return out
class AttentionGate(nn.Module):
def __init__(self, F_g, F_l, dimensions):
super(AttentionGate, self).__init__()
self.W_gate = nn.Sequential(
nn.Conv2d(F_g, dimensions, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(dimensions)
)
self.W_x = nn.Sequential(
nn.Conv2d(F_l, dimensions, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(dimensions)
)
self.psi = nn.Sequential(
nn.Conv2d(dimensions, 1, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(1),
nn.Sigmoid()
)
self.relu = nn.PReLU()
def forward(self, g, x):
g1 = self.W_gate(g)
x1 = self.W_x(x)
psi = self.relu(g1 + x1)
psi = self.psi(psi)
out = x * psi
return out
class UNetUpConvBlock(nn.Module):
def __init__(self, in_channel, out_channel, upmode, ca_layer, up_factor = 2, att_mode = "standard"):
super(UNetUpConvBlock, self).__init__()
self.att_mode = att_mode
self.ca_layer = ca_layer
if upmode == 'upsample':
self.Upsize = nn.Sequential(
nn.Upsample(scale_factor=up_factor, mode='bilinear', align_corners=False),
nn.Conv2d(in_channel, out_channel, kernel_size=1, stride=1, padding=0),
)
elif upmode == 'upconv':
self.Upsize = nn.ConvTranspose2d(in_channel,out_channel,kernel_size=2,stride = 2)
elif upmode == 'shuffle':
self.Upsize = nn.Sequential(
nn.Conv2d(in_channel,out_channel*4,kernel_size=3,stride=1,padding=1),
nn.PReLU(),
nn.PixelShuffle(2),
nn.Conv2d(out_channel,out_channel,kernel_size=3,stride = 1,padding=1)
)
# self.conv = UNetConvBlock(in_channel, out_channel)
if self.att_mode == 'standard':
self.attention_gate = AttentionGate(out_channel, out_channel, out_channel)
self.conv = UNetConvBlock(in_channel, out_channel, ca_layer=self.ca_layer)
elif self.att_mode == 'modified':
self.attention_gate = AttentionGate(out_channel, out_channel, out_channel )
self.conv = UNetConvBlock(3*out_channel, out_channel, ca_layer = self.ca_layer)
elif self.att_mode == 'None':
self.conv = UNetConvBlock(in_channel, out_channel, ca_layer=self.ca_layer)
def forward(self, x, residue):
x = self.Upsize(x)
x = F.interpolate(x, size=residue.shape[2:], mode='bilinear')
if self.att_mode == "standard":
attn = self.attention_gate(g = x, x=residue)
out = torch.cat([x, attn],dim = 1)
out = self.conv(out)
elif self.att_mode == 'modified':
attn = self.attention_gate(g = x, x = residue)
out = torch.cat([x,residue,attn],dim = 1)
out = self.conv(out)
elif self.att_mode == 'None':
out = torch.cat([x,residue], dim = 1)
out = self.conv(out)
return out
class AUNet(nn.Module):
def __init__(self,in_channels = 6,out_channels = 6,depth = 3,growth_factor = 6,
interp_mode = 'bicubic', up_mode = 'upconv',spatial_attention = "standard", ca_layer = True):
super(AUNet,self).__init__()
if not spatial_attention in ['None', 'modified', 'standard']:
raise AssertionError("spatial_attention options : \'None\'- no spatial attention, \'standard\'-spatial attention as in attention unet paper, \'modified\'-modified attention unet")
self.in_channels = in_channels
self.out_channels = out_channels
self.depth = depth
self.growth_factor = growth_factor
self.interp_mode = interp_mode
prev_channels = self.in_channels
self.up_mode = up_mode
self.att_mode = spatial_attention
self.ca_layer = ca_layer
self.encoding_module = nn.ModuleList()
for i in range(self.depth):
self.encoding_module.append(UNetConvBlock(in_channel=prev_channels,out_channel=2**(self.growth_factor + i), ca_layer=self.ca_layer))
prev_channels = 2**(self.growth_factor+i)
self.decoding_module = nn.ModuleList()
for i in reversed(range(self.depth-1)):
self.decoding_module.append(UNetUpConvBlock(prev_channels,2**(self.growth_factor+i),upmode = self.up_mode, att_mode = self.att_mode, ca_layer = self.ca_layer))
prev_channels = 2**(self.growth_factor+i)
self.final = nn.Conv2d(prev_channels,out_channels,1,1,0)
def forward(self,MS,PAN = None):
if PAN == None:
x = MS
else:
x = torch.cat([MS,PAN],dim = 1)
blocks = []
for i,down in enumerate(self.encoding_module):
x = down(x)
if i != len(self.encoding_module)-1:
blocks.append(x)
x = F.avg_pool2d(x,2)
for i,up in enumerate(self.decoding_module):
x = up(x,blocks[-i-1])
x = self.final(x)
return x
if __name__ == '__main__':
x = torch.rand([9,7,256,256]).cuda()
model = AUNet(in_channels=7, out_channels=6, depth=5, spatial_attention="modified", growth_factor=6,
interp_mode='bilinear', up_mode='upconv', ca_layer=True).cuda()
x = model(x)
# print(model)
activation = {}
for layer in model:
print(layer) |