venkatesh-thiru commited on
Commit
822f13d
·
verified ·
1 Parent(s): 96353a2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -3
README.md CHANGED
@@ -1,3 +1,49 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+ ## Model Card for UNet-6depth-shuffle: `venkatesh-thiru/s2l8h-UNet-6depth-shuffle`
6
+
7
+ ### Model Description
8
+
9
+ The UNet-6depth-shuffle model harmonizes Landsat-8 and Sentinel-2 imagery by improving the spatial resolution of Landsat-8 images. This model uses Landsat-8 multispectral and pan-chromatic images to produce outputs that match the Sentinel-2's spectral and spatial characteristics.
10
+
11
+ ### Model Architecture
12
+
13
+ This UNet model features 6 depth levels and incorporates a shuffling mechanism to enhance image resolution and spectral accuracy. The depth and shuffling operations are tailored to achieve high-quality transformations, ensuring the output images closely resemble Sentinel-2 data.
14
+
15
+ ### Usage
16
+
17
+ ```python
18
+ from transformers import AutoModel
19
+
20
+ # Load the UNet-6depth-shuffle model
21
+ model = AutoModel.from_pretrained("venkatesh-thiru/s2l8h-UNet-6depth-shuffle", trust_remote_code=True)
22
+
23
+ # Harmonize Landsat-8 images
24
+ l8up = model(l8MS, l8pan)
25
+ ```
26
+ ### Where:
27
+
28
+ l8MS - Landsat Multispectral images (L2 Reflectances)
29
+
30
+ l8pan - Landsat Pan-Chromatic images (L1 Reflectances)
31
+
32
+ ### Applications
33
+ Water quality assessment
34
+
35
+ Urban planning
36
+
37
+ Climate monitoring
38
+
39
+ Disaster response
40
+
41
+ Infrastructure oversight
42
+
43
+ Agricultural surveillance
44
+
45
+ ### Limitations
46
+ Minor limitations may arise in regions with different spectral properties or under extreme environmental conditions.
47
+
48
+ ### Reference
49
+ For more details, refer to the publication: 10.1016/j.isprsjprs.2024.04.026