SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
RequestMoveToFloor
  • 'Please go to the 3rd floor.'
  • 'Can you take me to floor 5?'
  • 'I need to go to the 8th floor.'
RequestMoveUp
  • 'Go one floor up'
  • 'Take me up two floors'
  • 'Go up three floors, please'
RequestMoveDown
  • 'Move me down one level'
  • 'Can you take me down two floors?'
  • 'Go down three levels'
Confirm
  • "Yes, that's right."
  • 'Sure.'
  • 'Exactly.'
RequestEmployeeLocation
  • 'Where is Erik Velldal’s office?'
  • 'Which floor is Andreas Austeng on?'
  • 'Can you tell me where Birthe Soppe’s office is?'
CurrentFloor
  • 'Which floor are we on?'
  • 'What floor is this?'
  • 'Are we on the 5th floor?'
Stop
  • 'Stop the elevator.'
  • "Wait, don't go to that floor."
  • 'No, not that floor.'
OutOfCoverage
  • "What's the capital of France?"
  • 'How many floors does this building have?'
  • 'Can you make a phone call for me?'

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("victomoe/setfit-intent-classifier-3")
# Run inference
preds = model("Okay, go ahead.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 5.2118 9
Label Training Sample Count
Confirm 22
CurrentFloor 21
OutOfCoverage 22
RequestEmployeeLocation 22
RequestMoveDown 20
RequestMoveToFloor 23
RequestMoveUp 20
Stop 20

Training Hyperparameters

  • batch_size: (32, 32)
  • num_epochs: (10, 10)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0013 1 0.195 -
0.0633 50 0.1877 -
0.1266 100 0.1592 -
0.1899 150 0.1141 -
0.2532 200 0.0603 -
0.3165 250 0.0283 -
0.3797 300 0.0104 -
0.4430 350 0.0043 -
0.5063 400 0.0027 -
0.5696 450 0.0021 -
0.6329 500 0.0017 -
0.6962 550 0.0015 -
0.7595 600 0.0011 -
0.8228 650 0.001 -
0.8861 700 0.0011 -
0.9494 750 0.0008 -
1.0127 800 0.0007 -
1.0759 850 0.0006 -
1.1392 900 0.0006 -
1.2025 950 0.0005 -
1.2658 1000 0.0005 -
1.3291 1050 0.0005 -
1.3924 1100 0.0004 -
1.4557 1150 0.0004 -
1.5190 1200 0.0004 -
1.5823 1250 0.0004 -
1.6456 1300 0.0004 -
1.7089 1350 0.0003 -
1.7722 1400 0.0003 -
1.8354 1450 0.0003 -
1.8987 1500 0.0003 -
1.9620 1550 0.0003 -
2.0253 1600 0.0003 -
2.0886 1650 0.0003 -
2.1519 1700 0.0003 -
2.2152 1750 0.0003 -
2.2785 1800 0.0003 -
2.3418 1850 0.0002 -
2.4051 1900 0.0002 -
2.4684 1950 0.0002 -
2.5316 2000 0.0002 -
2.5949 2050 0.0002 -
2.6582 2100 0.0002 -
2.7215 2150 0.0002 -
2.7848 2200 0.0002 -
2.8481 2250 0.0002 -
2.9114 2300 0.0002 -
2.9747 2350 0.0002 -
3.0380 2400 0.0002 -
3.1013 2450 0.0009 -
3.1646 2500 0.0003 -
3.2278 2550 0.0002 -
3.2911 2600 0.0002 -
3.3544 2650 0.0002 -
3.4177 2700 0.0002 -
3.4810 2750 0.0002 -
3.5443 2800 0.0002 -
3.6076 2850 0.0002 -
3.6709 2900 0.0002 -
3.7342 2950 0.0002 -
3.7975 3000 0.0002 -
3.8608 3050 0.0002 -
3.9241 3100 0.0001 -
3.9873 3150 0.0002 -
4.0506 3200 0.0001 -
4.1139 3250 0.0001 -
4.1772 3300 0.0001 -
4.2405 3350 0.0001 -
4.3038 3400 0.0001 -
4.3671 3450 0.0001 -
4.4304 3500 0.0005 -
4.4937 3550 0.0001 -
4.5570 3600 0.0001 -
4.6203 3650 0.0001 -
4.6835 3700 0.0001 -
4.7468 3750 0.0001 -
4.8101 3800 0.0001 -
4.8734 3850 0.0001 -
4.9367 3900 0.0001 -
5.0 3950 0.0001 -
5.0633 4000 0.0001 -
5.1266 4050 0.0001 -
5.1899 4100 0.0001 -
5.2532 4150 0.0001 -
5.3165 4200 0.0001 -
5.3797 4250 0.0001 -
5.4430 4300 0.0001 -
5.5063 4350 0.0001 -
5.5696 4400 0.0001 -
5.6329 4450 0.0001 -
5.6962 4500 0.0001 -
5.7595 4550 0.0001 -
5.8228 4600 0.0001 -
5.8861 4650 0.0001 -
5.9494 4700 0.0001 -
6.0127 4750 0.0001 -
6.0759 4800 0.0001 -
6.1392 4850 0.0001 -
6.2025 4900 0.0001 -
6.2658 4950 0.0001 -
6.3291 5000 0.0001 -
6.3924 5050 0.0001 -
6.4557 5100 0.0001 -
6.5190 5150 0.0001 -
6.5823 5200 0.0001 -
6.6456 5250 0.0001 -
6.7089 5300 0.0001 -
6.7722 5350 0.0001 -
6.8354 5400 0.0001 -
6.8987 5450 0.0001 -
6.9620 5500 0.0001 -
7.0253 5550 0.0001 -
7.0886 5600 0.0001 -
7.1519 5650 0.0001 -
7.2152 5700 0.0001 -
7.2785 5750 0.0001 -
7.3418 5800 0.0001 -
7.4051 5850 0.0001 -
7.4684 5900 0.0001 -
7.5316 5950 0.0001 -
7.5949 6000 0.0001 -
7.6582 6050 0.0001 -
7.7215 6100 0.0001 -
7.7848 6150 0.0001 -
7.8481 6200 0.0001 -
7.9114 6250 0.0001 -
7.9747 6300 0.0001 -
8.0380 6350 0.0001 -
8.1013 6400 0.0001 -
8.1646 6450 0.0001 -
8.2278 6500 0.0001 -
8.2911 6550 0.0001 -
8.3544 6600 0.0001 -
8.4177 6650 0.0001 -
8.4810 6700 0.0001 -
8.5443 6750 0.0001 -
8.6076 6800 0.0001 -
8.6709 6850 0.0001 -
8.7342 6900 0.0001 -
8.7975 6950 0.0001 -
8.8608 7000 0.0001 -
8.9241 7050 0.0001 -
8.9873 7100 0.0001 -
9.0506 7150 0.0001 -
9.1139 7200 0.0001 -
9.1772 7250 0.0001 -
9.2405 7300 0.0001 -
9.3038 7350 0.0001 -
9.3671 7400 0.0001 -
9.4304 7450 0.0001 -
9.4937 7500 0.0001 -
9.5570 7550 0.0001 -
9.6203 7600 0.0001 -
9.6835 7650 0.0001 -
9.7468 7700 0.0001 -
9.8101 7750 0.0001 -
9.8734 7800 0.0001 -
9.9367 7850 0.0001 -
10.0 7900 0.0001 -

Framework Versions

  • Python: 3.10.8
  • SetFit: 1.1.0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.38.2
  • PyTorch: 2.1.2
  • Datasets: 2.17.1
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for victomoe/setfit-intent-classifier-3

Finetuned
(265)
this model