convnextv2-tiny-1k-224-finetuned-bottomwear

This model is a fine-tuned version of facebook/convnextv2-tiny-1k-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3252
  • Accuracy: 0.875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8889 6 2.0789 0.0938
2.1005 1.9259 13 2.0276 0.125
2.0321 2.9630 20 1.9456 0.2812
2.0321 4.0 27 1.8393 0.4583
1.9151 4.8889 33 1.7343 0.5833
1.7396 5.9259 40 1.5972 0.6042
1.7396 6.9630 47 1.4546 0.6771
1.5392 8.0 54 1.2943 0.7396
1.3096 8.8889 60 1.1409 0.7396
1.3096 9.9259 67 0.9841 0.8229
1.1062 10.9630 74 0.8512 0.8229
0.896 12.0 81 0.7128 0.8542
0.896 12.8889 87 0.6366 0.8333
0.712 13.9259 94 0.5419 0.8646
0.6231 14.9630 101 0.5082 0.8646
0.6231 16.0 108 0.4674 0.875
0.4962 16.8889 114 0.4480 0.8542
0.4322 17.9259 121 0.4138 0.875
0.4322 18.9630 128 0.3947 0.8646
0.3937 20.0 135 0.3827 0.8646
0.3377 20.8889 141 0.3626 0.8646
0.3377 21.9259 148 0.3579 0.8646
0.3099 22.9630 155 0.3558 0.8646
0.2895 24.0 162 0.3243 0.8646
0.2895 24.8889 168 0.3473 0.875
0.2732 25.9259 175 0.3461 0.8646
0.2447 26.9630 182 0.3450 0.8958
0.2447 28.0 189 0.3603 0.8958
0.2009 28.8889 195 0.3214 0.8854
0.2064 29.9259 202 0.3043 0.875
0.2064 30.9630 209 0.2917 0.8958
0.2139 32.0 216 0.2860 0.8958
0.1732 32.8889 222 0.3314 0.8333
0.1732 33.9259 229 0.3391 0.875
0.2009 34.9630 236 0.3118 0.8958
0.1683 36.0 243 0.3162 0.875
0.1683 36.8889 249 0.3011 0.8646
0.16 37.9259 256 0.2981 0.8854
0.1448 38.9630 263 0.3417 0.9062
0.1272 40.0 270 0.3558 0.8646
0.1272 40.8889 276 0.3948 0.8542
0.1578 41.9259 283 0.3668 0.8646
0.1604 42.9630 290 0.3342 0.8958
0.1604 44.0 297 0.3141 0.9167
0.1251 44.8889 303 0.3266 0.8854
0.1449 45.9259 310 0.3438 0.8854
0.1449 46.9630 317 0.3383 0.875
0.1134 48.0 324 0.3341 0.8958
0.1558 48.8889 330 0.2855 0.8958
0.1558 49.9259 337 0.2843 0.8958
0.1433 50.9630 344 0.2879 0.8438
0.1207 52.0 351 0.2887 0.8854
0.1207 52.8889 357 0.3173 0.8958
0.1006 53.9259 364 0.2926 0.8854
0.1053 54.9630 371 0.2791 0.9062
0.1053 56.0 378 0.3276 0.875
0.106 56.8889 384 0.3224 0.875
0.1058 57.9259 391 0.3385 0.8854
0.1058 58.9630 398 0.3494 0.8958
0.0962 60.0 405 0.2798 0.8854
0.0883 60.8889 411 0.2934 0.8854
0.0883 61.9259 418 0.2956 0.875
0.084 62.9630 425 0.2918 0.8958
0.0808 64.0 432 0.3416 0.8854
0.0808 64.8889 438 0.3502 0.8854
0.0804 65.9259 445 0.2985 0.8958
0.0854 66.9630 452 0.2792 0.9062
0.0854 68.0 459 0.3644 0.8958
0.0887 68.8889 465 0.2684 0.9062
0.0671 69.9259 472 0.2802 0.8958
0.0671 70.9630 479 0.2901 0.9062
0.0704 72.0 486 0.3098 0.8854
0.0802 72.8889 492 0.2960 0.8854
0.0802 73.9259 499 0.2757 0.875
0.09 74.9630 506 0.3104 0.8646
0.0772 76.0 513 0.3120 0.8958
0.0772 76.8889 519 0.2803 0.9167
0.0725 77.9259 526 0.2825 0.8958
0.0684 78.9630 533 0.3255 0.875
0.0732 80.0 540 0.3091 0.9062
0.0732 80.8889 546 0.2876 0.9167
0.0743 81.9259 553 0.3035 0.8646
0.0807 82.9630 560 0.2751 0.9271
0.0807 84.0 567 0.2657 0.9167
0.0799 84.8889 573 0.2810 0.9062
0.0632 85.9259 580 0.3037 0.9062
0.0632 86.9630 587 0.3357 0.9062
0.0579 88.0 594 0.3171 0.8646
0.0593 88.8889 600 0.3223 0.8854
0.0593 89.9259 607 0.2977 0.8958
0.0418 90.9630 614 0.3380 0.9062
0.0647 92.0 621 0.2863 0.875
0.0647 92.8889 627 0.2899 0.9167
0.0649 93.9259 634 0.2853 0.8958
0.0538 94.9630 641 0.2452 0.8854
0.0538 96.0 648 0.2569 0.8958
0.0483 96.8889 654 0.2687 0.9062
0.0597 97.9259 661 0.3083 0.875
0.0597 98.9630 668 0.2929 0.8646
0.0544 100.0 675 0.3253 0.875
0.0585 100.8889 681 0.3394 0.8646
0.0585 101.9259 688 0.3748 0.8542
0.0563 102.9630 695 0.3890 0.8646
0.059 104.0 702 0.3460 0.8854
0.059 104.8889 708 0.3308 0.875
0.0601 105.9259 715 0.3228 0.875
0.0512 106.9630 722 0.3190 0.8854
0.0512 108.0 729 0.3028 0.875
0.0346 108.8889 735 0.3066 0.9062
0.0434 109.9259 742 0.2952 0.9062
0.0434 110.9630 749 0.3054 0.9062
0.0466 112.0 756 0.3087 0.8958
0.0402 112.8889 762 0.3212 0.875
0.0402 113.9259 769 0.3235 0.8854
0.0491 114.9630 776 0.3135 0.9062
0.0495 116.0 783 0.2991 0.8958
0.0495 116.8889 789 0.3051 0.8854
0.0536 117.9259 796 0.3339 0.875
0.0419 118.9630 803 0.3371 0.8646
0.0333 120.0 810 0.3376 0.8646
0.0333 120.8889 816 0.3379 0.8646
0.0376 121.9259 823 0.3373 0.8542
0.0397 122.9630 830 0.3437 0.8646
0.0397 124.0 837 0.3585 0.8646
0.0299 124.8889 843 0.3514 0.8646
0.0468 125.9259 850 0.3397 0.8646
0.0468 126.9630 857 0.3316 0.8542
0.0351 128.0 864 0.3334 0.8646
0.0439 128.8889 870 0.3324 0.8646
0.0439 129.9259 877 0.3290 0.8646
0.0478 130.9630 884 0.3256 0.875
0.0434 132.0 891 0.3253 0.875
0.0434 132.8889 897 0.3251 0.875
0.0374 133.3333 900 0.3252 0.875

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
27.9M params
Tensor type
F32
ยท
Inference API
Unable to determine this model's library. Check the docs .

Model tree for vishalkatheriya18/convnextv2-tiny-1k-224-finetuned-bottomwear

Finetuned
(37)
this model

Space using vishalkatheriya18/convnextv2-tiny-1k-224-finetuned-bottomwear 1

Evaluation results