metadata
datasets:
- vishnun/CodevsNL
language:
- en
metrics:
- accuracy
library_name: transformers
tags:
- nlp
- code
- classification
PreFace
Code vs Natural language classification using bert-small from prajwall, below are the metrics achieved
Training Metrics
Epoch | Training Loss | Validation Loss | Accuracy | |
---|---|---|---|---|
1 | 0.022500 | 0.012705 | 0.997203 | |
2 | 0.008700 | 0.013107 | 0.996880 | |
3 | 0.002700 | 0.014081 | 0.997633 | |
4 | 0.001800 | 0.010666 | 0.997526 | |
5 | 0.000900 | 0.010800 | 0.998063 |
More
- Github repo for installable python package: https://github.com/Vishnunkumar
- Space on the extraction of code blocks from screenshots: https://huggingface.co/spaces/vishnun/SnapCode