|
--- |
|
license: mit |
|
--- |
|
|
|
# Compressed LLM Model Zone |
|
|
|
The models are prepared by [Visual Informatics Group @ University of Texas at Austin (VITA-group)](https://vita-group.github.io/). Credits to Ajay Jaiswal, Zhenyu Zhang, Zhangheng Li, Lu Yin, Shiwei Liu and Junyuan Hong. |
|
|
|
License: [MIT License](https://opensource.org/license/mit/) |
|
|
|
Setup environment |
|
```shell |
|
pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117 |
|
pip install transformers==4.31.0 |
|
pip install accelerate |
|
pip install auto-gptq # for gptq |
|
pip install sentencepiece |
|
``` |
|
|
|
How to use pruned models |
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
base_model = 'llama-2-7b' |
|
comp_method = 'magnitude_unstructured' |
|
comp_degree = 0.2 |
|
model_path = f'vita-group/{base_model}_{comp_method}' |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
revision=f's{comp_degree}', |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf') |
|
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids.cuda() |
|
outputs = model.generate(input_ids, max_new_tokens=128) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
How to use wanda+gptq models |
|
```python |
|
from transformers import AutoTokenizer |
|
from auto_gptq import AutoGPTQForCausalLM |
|
model_path = 'vita-group/llama-2-7b_wanda_2_4_gptq_4bit_128g' |
|
tokenizer_path = 'meta-llama/Llama-2-7b-hf' |
|
model = AutoGPTQForCausalLM.from_quantized( |
|
model_path, |
|
# inject_fused_attention=False, # or |
|
disable_exllama=True, |
|
device_map='auto', |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True) |
|
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids.to('cuda') |
|
outputs = model.generate(input_ids=input_ids, max_length=128) |
|
tokenizer.decode(outputs[0]) |
|
``` |
|
|
|
How to use gptq models |
|
```python |
|
from transformers import AutoTokenizer |
|
from auto_gptq import AutoGPTQForCausalLM |
|
# model_path = 'vita-group/llama-2-7b_wanda_2_4_gptq_4bit_128g' |
|
# tokenizer_path = 'meta-llama/Llama-2-7b-hf' |
|
model_path = 'vita-group/vicuna-7b-v1.3_gptq' |
|
tokenizer_path = 'lmsys/vicuna-7b-v1.3' |
|
model = AutoGPTQForCausalLM.from_quantized( |
|
model_path, |
|
# inject_fused_attention=False, # or |
|
disable_exllama=True, |
|
device_map='auto', |
|
revision='2bit_128g', |
|
) |
|
from transformers import AutoTokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True) |
|
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids.to('cuda') |
|
outputs = model.generate(input_ids=input_ids, max_length=128) |
|
tokenizer.decode(outputs[0]) |
|
``` |
|
|
|
|
|
| | Base Model | Model Size | Compression Method | Compression Degree | |
|
|---:|:-------------|:-------------|:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------| |
|
| 0 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.1) | |
|
| 1 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.2) | |
|
| 2 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.3) | |
|
| 3 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.5) | |
|
| 4 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.6) | |
|
| 5 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.1) | |
|
| 6 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.2) | |
|
| 7 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.3) | |
|
| 8 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.5) | |
|
| 9 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.6) | |
|
| 10 | Llama-2 | 7b | [wanda_gptq](https://huggingface.co/vita-group/llama-2-7b_wanda_2_4_gptq_4bit_128g) | 4bit_128g | |
|
| 11 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.1) | |
|
| 12 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.2) | |
|
| 13 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.3) | |
|
| 14 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.5) | |
|
| 15 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.6) | |
|
| 16 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [10bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/10bit_128g) | |
|
| 17 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [12bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/12bit_128g) | |
|
| 18 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [14bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/14bit_128g) | |
|
| 19 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [2bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/2bit_128g) | |
|
| 20 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [3bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/3bit_128g) | |
|
| 21 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [4bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/4bit_128g) | |
|
| 22 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [6bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/6bit_128g) | |
|
| 23 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [8bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/8bit_128g) | |
|
| 24 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [10bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/10bit_128g) | |
|
| 25 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [12bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/12bit_128g) | |
|
| 26 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [14bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/14bit_128g) | |
|
| 27 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [2bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/2bit_128g) | |
|
| 28 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [3bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/3bit_128g) | |
|
| 29 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [4bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/4bit_128g) | |
|
| 30 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [6bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/6bit_128g) | |
|
| 31 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [8bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/8bit_128g) | |
|
|
|
|
|
|
|
|