metadata
license: mit
Compressed LLM Model Zone
The models are prepared by Visual Informatics Group @ University of Texas at Austin (VITA-group). Credits to Ajay Jaiswal, Zhenyu Zhang, Zhangheng Li, Lu Yin, Shiwei Liu and Junyuan Hong.
License: MIT License
Setup environment
pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117
pip install transformers==4.31.0
pip install accelerate
pip install auto-gptq # for gptq
pip install sentencepiece
How to use pruned models
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
base_model = 'llama-2-7b'
comp_method = 'magnitude_unstructured'
comp_degree = 0.2
model_path = f'vita-group/{base_model}_{comp_method}'
model = AutoModelForCausalLM.from_pretrained(
model_path,
revision=f's{comp_degree}',
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf')
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids.cuda()
outputs = model.generate(input_ids, max_new_tokens=128)
print(tokenizer.decode(outputs[0]))
How to use wanda+gptq models
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
model_path = 'vita-group/llama-2-7b_wanda_2_4_gptq_4bit_128g'
tokenizer_path = 'meta-llama/Llama-2-7b-hf'
model = AutoGPTQForCausalLM.from_quantized(
model_path,
# inject_fused_attention=False, # or
disable_exllama=True,
device_map='auto',
)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True)
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids.to('cuda')
outputs = model.generate(input_ids=input_ids, max_length=128)
tokenizer.decode(outputs[0])
How to use gptq models
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
# model_path = 'vita-group/llama-2-7b_wanda_2_4_gptq_4bit_128g'
# tokenizer_path = 'meta-llama/Llama-2-7b-hf'
model_path = 'vita-group/vicuna-7b-v1.3_gptq'
tokenizer_path = 'lmsys/vicuna-7b-v1.3'
model = AutoGPTQForCausalLM.from_quantized(
model_path,
# inject_fused_attention=False, # or
disable_exllama=True,
device_map='auto',
revision='2bit_128g',
)
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True)
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids.to('cuda')
outputs = model.generate(input_ids=input_ids, max_length=128)
tokenizer.decode(outputs[0])
Base Model | Model Size | Compression Method | Compression Degree | |
---|---|---|---|---|
0 | Llama-2 | 7b | magnitude_unstructured | s0.1 |
1 | Llama-2 | 7b | magnitude_unstructured | s0.2 |
2 | Llama-2 | 7b | magnitude_unstructured | s0.3 |
3 | Llama-2 | 7b | magnitude_unstructured | s0.5 |
4 | Llama-2 | 7b | magnitude_unstructured | s0.6 |
5 | Llama-2 | 7b | sparsegpt_unstructured | s0.1 |
6 | Llama-2 | 7b | sparsegpt_unstructured | s0.2 |
7 | Llama-2 | 7b | sparsegpt_unstructured | s0.3 |
8 | Llama-2 | 7b | sparsegpt_unstructured | s0.5 |
9 | Llama-2 | 7b | sparsegpt_unstructured | s0.6 |
10 | Llama-2 | 7b | wanda_gptq | 4bit_128g |
11 | Llama-2 | 7b | wanda_unstructured | s0.1 |
12 | Llama-2 | 7b | wanda_unstructured | s0.2 |
13 | Llama-2 | 7b | wanda_unstructured | s0.3 |
14 | Llama-2 | 7b | wanda_unstructured | s0.5 |
15 | Llama-2 | 7b | wanda_unstructured | s0.6 |
16 | vicuna-v1.3 | 13b | gptq | 10bit_128g |
17 | vicuna-v1.3 | 13b | gptq | 12bit_128g |
18 | vicuna-v1.3 | 13b | gptq | 14bit_128g |
19 | vicuna-v1.3 | 13b | gptq | 2bit_128g |
20 | vicuna-v1.3 | 13b | gptq | 3bit_128g |
21 | vicuna-v1.3 | 13b | gptq | 4bit_128g |
22 | vicuna-v1.3 | 13b | gptq | 6bit_128g |
23 | vicuna-v1.3 | 13b | gptq | 8bit_128g |
24 | vicuna-v1.3 | 7b | gptq | 10bit_128g |
25 | vicuna-v1.3 | 7b | gptq | 12bit_128g |
26 | vicuna-v1.3 | 7b | gptq | 14bit_128g |
27 | vicuna-v1.3 | 7b | gptq | 2bit_128g |
28 | vicuna-v1.3 | 7b | gptq | 3bit_128g |
29 | vicuna-v1.3 | 7b | gptq | 4bit_128g |
30 | vicuna-v1.3 | 7b | gptq | 6bit_128g |
31 | vicuna-v1.3 | 7b | gptq | 8bit_128g |