hoa-7b / README.md
hieunguyen1053's picture
Update README.md
45ad32d
metadata
license: bigscience-bloom-rail-1.0
language:
  - vi
  - en
library_name: transformers
pipeline_tag: text-generation
tags:
  - bloom
  - causal-lm
  - pytorch
model-index:
  - name: vlsp-2023-vllm/hoa-7b
    results:
      - task:
          name: Word prediction
          type: text-generation
        dataset:
          type: vlsp-2023-vllm/vi_lambada
          name: vi_lambada
          split: test
        metrics:
          - type: Perplexity
            value: 8.110657542682734
      - task:
          name: Fewshot Translation
          type: translation
        dataset:
          type: vlsp-2023-vllm/en-to-vi-formal-informal-tranlations
          name: English to Vietnamese Formal/Informal translation
          split: test
        metrics:
          - type: SacreBLEU
            value: 25.9
datasets:
  - vlsp-2023-vllm/vi_lambada
metrics:
  - perplexity

Hoa 7B (Bloom architecture)

Hoa is an autoregressive Large Language Model (LLM), based on Bloom's model architecture. Hoa was trained on part of the Common Crawl dataset in Vietnamese and English.

Details will be available soon.

To contact us, mail to: [email protected] (Lê Anh Cường) | [email protected] (Hiếu) | [email protected] (Nguyễn Việt Cường)

How to use

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("vlsp-2023-vllm/hoa-7b")
model = AutoModelForCausalLM.from_pretrained("vlsp-2023-vllm/hoa-7b", low_cpu_mem_usage=True)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 
model.to(device)

prompt = "Địa chỉ trường Đại học Tôn Đức Thắng nằm ở số"
input_ids = tokenizer(prompt, return_tensors="pt")['input_ids'].to(device)

gen_tokens = model.generate(input_ids, max_length=max_length, repetition_penalty=1.1)

print(tokenizer.batch_decode(gen_tokens)[0])