metadata
language: fr
pipeline_tag: token-classification
widget:
- text: je voudrais réserver une chambre à paris pour demain et lundi
- text: d'accord pour l'hôtel à quatre vingt dix euros la nuit
- text: deux nuits s'il vous plait
- text: dans un hôtel avec piscine à marseille
tags:
- bert
- flaubert
- natural language understanding
- NLU
- spoken language understanding
- SLU
- understanding
- MEDIA
vpelloin/MEDIA_NLU-flaubert_oral_asr
This is a Natural Language Understanding (NLU) model for the French MEDIA benchmark. It maps each input words into outputs concepts tags (76 available).
This model is trained with flaubert-oral-asr
as it's inital checkpoint.
Available MEDIA NLU models:
- MEDIA_NLU-flaubert_base_cased: model trained with
flaubert_base_cased
as it's inital checkpoint - MEDIA_NLU-flaubert_base_uncased: model trained with
flaubert_base_uncased
as it's inital checkpoint - MEDIA_NLU-flaubert_oral_ft: model trained with
flaubert-oral-ft
as it's inital checkpoint - MEDIA_NLU-flaubert_oral_mixed: model trained with
flaubert-oral-mixed
as it's inital checkpoint - MEDIA_NLU-flaubert_oral_asr: model trained with
flaubert-oral-asr
as it's inital checkpoint - MEDIA_NLU-flaubert_oral_asr_nb: model trained with
flaubert-oral-asr_nb
as it's inital checkpoint
Usage with Pipeline
from transformers import pipeline
generator = pipeline(model="vpelloin/MEDIA_NLU-flaubert_oral_asr", task="token-classification")
sentences = [
"je voudrais réserver une chambre à paris pour demain et lundi",
"d'accord pour l'hôtel à quatre vingt dix euros la nuit",
"deux nuits s'il vous plait",
"dans un hôtel avec piscine à marseille"
]
for sentence in sentences:
print([(tok['word'], tok['entity']) for tok in generator(sentence)])
Usage with AutoTokenizer/AutoModel
from transformers import (
AutoTokenizer,
AutoModelForTokenClassification
)
tokenizer = AutoTokenizer.from_pretrained("vpelloin/MEDIA_NLU-flaubert_oral_asr")
model = AutoModelForTokenClassification.from_pretrained("vpelloin/MEDIA_NLU-flaubert_oral_asr")
sentences = [
"je voudrais réserver une chambre à paris pour demain et lundi",
"d'accord pour l'hôtel à quatre vingt dix euros la nuit",
"deux nuits s'il vous plait",
"dans un hôtel avec piscine à marseille"
]
inputs = tokenizer(sentences, padding=True, return_tensors='pt')
outptus = model(**inputs).logits
print([[model.config.id2label[i] for i in b] for b in outptus.argmax(dim=-1).tolist()])
Reference
If you use this model for your scientific publication, or if you find the resources in this repository useful, please cite the following paper:
@inproceedings{pelloin22_interspeech,
author={Valentin Pelloin and Franck Dary and Nicolas Hervé and Benoit Favre and Nathalie Camelin and Antoine LAURENT and Laurent Besacier},
title={ASR-Generated Text for Language Model Pre-training Applied to Speech Tasks},
year=2022,
booktitle={Proc. Interspeech 2022},
pages={3453--3457},
doi={10.21437/Interspeech.2022-352}
}