tiennguyenbnbk's picture
End of training
53efd81 verified
metadata
base_model: vinai/phobert-base-v2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - recall
  - precision
model-index:
  - name: cls-comment-phobert-base-v2-v2.3
    results: []

cls-comment-phobert-base-v2-v2.3

This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6228
  • Accuracy: 0.9272
  • F1 Score: 0.8944
  • Recall: 0.8843
  • Precision: 0.9063

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 4000
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Score Recall Precision
1.1884 1.04 100 1.0905 0.7277 0.4371 0.4229 0.5017
1.0502 2.08 200 0.9278 0.7956 0.5245 0.5274 0.5244
0.9031 3.12 300 0.7793 0.8446 0.5653 0.5897 0.7067
0.7772 4.17 400 0.7090 0.8697 0.6917 0.6804 0.7269
0.6741 5.21 500 0.6483 0.8959 0.8078 0.7818 0.8798
0.6156 6.25 600 0.6268 0.9079 0.8601 0.8345 0.8933
0.5745 7.29 700 0.6176 0.9161 0.8739 0.8610 0.8881
0.5466 8.33 800 0.6134 0.9181 0.8730 0.8555 0.8951
0.5254 9.38 900 0.6196 0.9184 0.8794 0.8634 0.8980
0.5059 10.42 1000 0.6175 0.9220 0.8799 0.8702 0.8925
0.4971 11.46 1100 0.6110 0.9226 0.8771 0.8639 0.8929
0.4872 12.5 1200 0.6191 0.9230 0.8834 0.8774 0.8914
0.4756 13.54 1300 0.6240 0.9243 0.8929 0.8931 0.8938
0.4737 14.58 1400 0.6246 0.9203 0.8794 0.8582 0.9038
0.4626 15.62 1500 0.6267 0.9249 0.8890 0.8842 0.8955
0.4641 16.67 1600 0.6228 0.9272 0.8944 0.8843 0.9063
0.4562 17.71 1700 0.6256 0.9278 0.8923 0.8800 0.9065
0.4522 18.75 1800 0.6203 0.9285 0.8913 0.8845 0.8993
0.4476 19.79 1900 0.6258 0.9262 0.8849 0.8692 0.9034
0.4474 20.83 2000 0.6333 0.9272 0.8932 0.8751 0.9134
0.4421 21.88 2100 0.6340 0.9292 0.8929 0.8896 0.8975

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2