File size: 5,976 Bytes
ee586d1 5a6e371 ee586d1 5a6e371 b5b021d 5a6e371 b5b021d 75bf2e7 ee586d1 5a6e371 ea3e028 5a6e371 da6543c 5a6e371 ea3e028 5a6e371 ea3e028 5a6e371 ea3e028 ee586d1 94700a6 7a8036a ce4178e 94700a6 5a6e371 630fd43 ddb0d76 5a6e371 ee586d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
---
license: apache-2.0
language:
- ja
tags:
- automatic-speech-recognition
- common-voice
- hf-asr-leaderboard
- ja
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: wav2vec2-xls-r-1b
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7.0
type: mozilla-foundation/common_voice_7_0
args: ja
metrics:
- name: Test WER (with LM)
type: wer
value: 7.98
- name: Test CER (with LM)
type: cer
value: 3.42
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8.0
type: mozilla-foundation/common_voice_8_0
args: ja
metrics:
- name: Test WER (with LM)
type: wer
value: 7.88
- name: Test CER (with LM)
type: cer
value: 3.35
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: ja
metrics:
- name: Test WER (with LM)
type: wer
value: 28.07
- name: Test CER (with LM)
type: cer
value: 16.27
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: ja
metrics:
- name: Test CER
type: cer
value: 19.89
---
## Model description
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on my collection of Public Japanese Voice datasets for research [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0), [JUST](https://sites.google.com/site/shinnosuketakamichi/publication/jsut) (Japanese speech corpus of Saruwatari-lab., University of Tokyo), [JSSS](https://sites.google.com/site/shinnosuketakamichi/research-topics/jsss_corpus) (Japanese speech corpus for summarization and simplification), [CSS10](https://paperswithcode.com/dataset/css10) (A collection of single speaker speech datasets). You can find in preprocessing dataset in here VUMICHIEN/COMMON_VOICE_LARGE_JSUT_JSSS_CSS10.
### Total training data:
~60 hours
### Benchmark WER result:
| | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0)
|---|---|---|
|without LM| 10.96 | 10.91 |
|with 4-grams LM| 7.98 | 7.88 |
### Benchmark CER result:
| | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0)
|---|---|---|
|without LM| 4.28 | 4.22 |
|with 4-grams LM| 3.42 | 3.35 |
## Evaluation
Please use the eval.py file to run the evaluation:
```python
pip install mecab-python3 unidic-lite pykakasi
python eval.py --model_id vumichien/wav2vec2-xls-r-1b-japanese --dataset mozilla-foundation/common_voice_7_0 --config ja --split test --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 2.2896 | 3.37 | 1500 | 0.4748 | 0.4013 | 0.1767 |
| 1.1608 | 6.74 | 3000 | 0.3350 | 0.3159 | 0.1456 |
| 1.1042 | 10.11 | 4500 | 0.3119 | 0.2971 | 0.1400 |
| 1.0494 | 13.48 | 6000 | 0.2974 | 0.2867 | 0.1353 |
| 1.0061 | 16.85 | 7500 | 0.2802 | 0.2746 | 0.1300 |
| 0.9629 | 20.22 | 9000 | 0.2844 | 0.2776 | 0.1326 |
| 0.9267 | 23.59 | 10500 | 0.2577 | 0.2603 | 0.1255 |
| 0.8984 | 26.96 | 12000 | 0.2508 | 0.2531 | 0.1226 |
| 0.8729 | 30.34 | 13500 | 0.2629 | 0.2606 | 0.1254 |
| 0.8546 | 33.71 | 15000 | 0.2402 | 0.2447 | 0.1193 |
| 0.8304 | 37.08 | 16500 | 0.2532 | 0.2472 | 0.1209 |
| 0.8075 | 40.45 | 18000 | 0.2439 | 0.2469 | 0.1198 |
| 0.7827 | 43.82 | 19500 | 0.2387 | 0.2372 | 0.1167 |
| 0.7627 | 47.19 | 21000 | 0.2344 | 0.2331 | 0.1147 |
| 0.7402 | 50.56 | 22500 | 0.2314 | 0.2299 | 0.1135 |
| 0.718 | 53.93 | 24000 | 0.2257 | 0.2267 | 0.1114 |
| 0.7016 | 57.3 | 25500 | 0.2204 | 0.2184 | 0.1089 |
| 0.6804 | 60.67 | 27000 | 0.2227 | 0.2181 | 0.1085 |
| 0.6625 | 64.04 | 28500 | 0.2138 | 0.2112 | 0.1058 |
| 0.6465 | 67.42 | 30000 | 0.2141 | 0.2081 | 0.1044 |
| 0.6238 | 70.79 | 31500 | 0.2172 | 0.2082 | 0.1050 |
| 0.6062 | 74.16 | 33000 | 0.2174 | 0.2058 | 0.1043 |
| 0.588 | 77.53 | 34500 | 0.2156 | 0.2034 | 0.1027 |
| 0.5722 | 80.9 | 36000 | 0.2162 | 0.2032 | 0.1029 |
| 0.5585 | 84.27 | 37500 | 0.2156 | 0.2022 | 0.1021 |
| 0.5456 | 87.64 | 39000 | 0.2126 | 0.1993 | 0.1009 |
| 0.5325 | 91.01 | 40500 | 0.2121 | 0.1966 | 0.1003 |
| 0.5229 | 94.38 | 42000 | 0.2104 | 0.1941 | 0.0991 |
| 0.5134 | 97.75 | 43500 | 0.2108 | 0.1948 | 0.0992 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|