openai/whisper-large-v2

This model is a fine-tuned version of openai/whisper-large-v2 on the vumichien/preprocessed_jsut_jsss_css10_common_voice_11 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2284
  • Wer: 7.6453
  • Cer: 4.7187

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.1912 0.55 1000 0.1828 11.2314 7.0357
0.1329 1.1 2000 0.1618 9.4172 5.9028
0.0912 1.65 3000 0.1616 8.9257 5.4711
0.0576 2.2 4000 0.1664 8.5861 5.3055
0.0449 2.74 5000 0.1642 8.4510 5.2930
0.02 3.29 6000 0.1799 8.1537 5.0354
0.019 3.84 7000 0.1801 8.125 5.0827
0.0067 4.39 8000 0.2003 7.8412 4.8133
0.006 4.94 9000 0.2071 7.5811 4.7023
0.0022 5.49 10000 0.2284 7.6453 4.7187

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2
Downloads last month
26
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for vumichien/whisper-large-v2-mix-jp

Finetuned
(200)
this model

Dataset used to train vumichien/whisper-large-v2-mix-jp

Space using vumichien/whisper-large-v2-mix-jp 1

Evaluation results