|
--- |
|
license: mit |
|
base_model: indobenchmark/indobert-large-p1 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: indobert-large-p1-twitter-indonesia-sarcastic |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# indobert-large-p1-twitter-indonesia-sarcastic |
|
|
|
This model is a fine-tuned version of [indobenchmark/indobert-large-p1](https://huggingface.co/indobenchmark/indobert-large-p1) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3207 |
|
- Accuracy: 0.8643 |
|
- F1: 0.7160 |
|
- Precision: 0.7480 |
|
- Recall: 0.6866 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 100.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.5836 | 1.0 | 59 | 0.4153 | 0.8060 | 0.5738 | 0.6364 | 0.5224 | |
|
| 0.3766 | 2.0 | 118 | 0.3353 | 0.8433 | 0.5962 | 0.8378 | 0.4627 | |
|
| 0.2476 | 3.0 | 177 | 0.3114 | 0.8619 | 0.6942 | 0.7778 | 0.6269 | |
|
| 0.1356 | 4.0 | 236 | 0.3279 | 0.8694 | 0.7328 | 0.75 | 0.7164 | |
|
| 0.0536 | 5.0 | 295 | 0.4265 | 0.8582 | 0.7164 | 0.7164 | 0.7164 | |
|
| 0.0157 | 6.0 | 354 | 0.6448 | 0.8619 | 0.6667 | 0.8409 | 0.5522 | |
|
| 0.0076 | 7.0 | 413 | 0.5739 | 0.8619 | 0.7218 | 0.7273 | 0.7164 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|