Model Trained Using AutoNLP

  • Problem type: Multi-class Classification
  • Model ID: 492513457
  • CO2 Emissions (in grams): 5.527544460835904

Validation Metrics

  • Loss: 0.07609463483095169
  • Accuracy: 0.9735624586913417
  • Macro F1: 0.9736173135739408
  • Micro F1: 0.9735624586913417
  • Weighted F1: 0.9736173135739408
  • Macro Precision: 0.9737771415197378
  • Micro Precision: 0.9735624586913417
  • Weighted Precision: 0.9737771415197378
  • Macro Recall: 0.9735624586913417
  • Micro Recall: 0.9735624586913417
  • Weighted Recall: 0.9735624586913417

Usage

You can use CURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "Is this text really worth it?"}' https://api-inference.huggingface.co/models/wajidlinux99/gibberish-text-detector

Or Python API:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("wajidlinux99/gibberish-text-detector", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("wajidlinux99/gibberish-text-detector", use_auth_token=True)

inputs = tokenizer("Is this text really worth it?", return_tensors="pt")

outputs = model(**inputs)

Original Repository

***madhurjindal/autonlp-Gibberish-Detector-492513457

Downloads last month
33,250
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using wajidlinux99/gibberish-text-detector 2