|
# In-the-wild Inference |
|
|
|
## 2D Pose |
|
|
|
Please use [AlphaPose](https://github.com/MVIG-SJTU/AlphaPose#quick-start) to extract the 2D keypoints for your video first. We use the *Fast Pose* model trained on *Halpe* dataset ([Link](https://github.com/MVIG-SJTU/AlphaPose/blob/master/docs/MODEL_ZOO.md#halpe-dataset-26-keypoints)). |
|
|
|
Note: Currently we only support single person. If your video contains multiple person, you may need to use the [Pose Tracking Module for AlphaPose](https://github.com/MVIG-SJTU/AlphaPose/tree/master/trackers) and set `--focus` to specify the target person id. |
|
|
|
|
|
|
|
## 3D Pose |
|
|
|
| ![pose_1](https://github.com/motionbert/motionbert.github.io/blob/main/assets/pose_1.gif?raw=true) | ![pose_2](https://raw.githubusercontent.com/motionbert/motionbert.github.io/main/assets/pose_2.gif) | |
|
| ------------------------------------------------------------ | ------------------------------------------------------------ | |
|
|
|
|
|
1. Please download the checkpoint [here](https://1drv.ms/f/s!AvAdh0LSjEOlgT67igq_cIoYvO2y?e=bfEc73) and put it to `checkpoint/pose3d/FT_MB_lite_MB_ft_h36m_global_lite/`. |
|
1. Run the following command to infer from the extracted 2D poses: |
|
```bash |
|
python infer_wild.py \ |
|
--vid_path <your_video.mp4> \ |
|
--json_path <alphapose-results.json> \ |
|
--out_path <output_path> |
|
``` |
|
|
|
|
|
|
|
## Mesh |
|
|
|
| ![mesh_1](https://raw.githubusercontent.com/motionbert/motionbert.github.io/main/assets/mesh_1.gif) | ![mesh_2](https://github.com/motionbert/motionbert.github.io/blob/main/assets/mesh_2.gif?raw=true) | |
|
| ------------------------------------------------------------ | ----------- | |
|
|
|
1. Please download the checkpoint [here](https://1drv.ms/f/s!AvAdh0LSjEOlgTmgYNslCDWMNQi9?e=WjcB1F) and put it to `checkpoint/mesh/FT_MB_release_MB_ft_pw3d/` |
|
2. Run the following command to infer from the extracted 2D poses: |
|
```bash |
|
python infer_wild_mesh.py \ |
|
--vid_path <your_video.mp4> \ |
|
--json_path <alphapose-results.json> \ |
|
--out_path <output_path> \ |
|
--ref_3d_motion_path <3d-pose-results.npy> # Optional, use the estimated 3D motion for root trajectory. |
|
``` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|