File size: 2,243 Bytes
2c77bdd 6855ad8 2c77bdd 6855ad8 2c77bdd 6855ad8 2c77bdd 4312eeb 8e53fcf 20847d2 8e53fcf 20847d2 8e53fcf 20847d2 8e53fcf 20847d2 8e53fcf 20847d2 8e53fcf 20847d2 8e53fcf 20847d2 8e53fcf a364f07 8e53fcf 4312eeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: mit
language:
- en
inference: true
base_model:
- microsoft/codebert-base-mlm
pipeline_tag: fill-mask
tags:
- fill-mask
- smart-contract
- web3
- software-engineering
- embedding
- codebert
library_name: transformers
---
# SmartBERT V2 CodeBERT
![SmartBERT](./framework.png)
## Overview
SmartBERT V2 CodeBERT is a pre-trained model, initialized with **[CodeBERT-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm)**, designed to transfer **Smart Contract** function-level code into embeddings effectively.
- **Training Data:** Trained on **16,000** smart contracts.
- **Hardware:** Utilized 2 Nvidia A100 80G GPUs.
- **Training Duration:** More than 10 hours.
- **Evaluation Data:** Evaluated on **4,000** smart contracts.
## Preprocessing
All newline (`\n`) and tab (`\t`) characters in the function code were replaced with a single space to ensure consistency in the input data format.
## Base Model
- **Base Model**: [CodeBERT-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm)
## Training Setup
```python
from transformers import TrainingArguments
training_args = TrainingArguments(
output_dir=OUTPUT_DIR,
overwrite_output_dir=True,
num_train_epochs=20,
per_device_train_batch_size=64,
save_steps=10000,
save_total_limit=2,
evaluation_strategy="steps",
eval_steps=10000,
resume_from_checkpoint=checkpoint
)
```
## How to Use
To train and deploy the SmartBERT V2 model for Web API services, please refer to our GitHub repository: [web3se-lab/SmartBERT](https://github.com/web3se-lab/SmartBERT).
Or use pipline:
```python
from transformers import RobertaTokenizer, RobertaForMaskedLM, pipeline
model = RobertaForMaskedLM.from_pretrained('web3se/SmartBERT-v3')
tokenizer = RobertaTokenizer.from_pretrained('web3se/SmartBERT-v3')
code_example = "function totalSupply() external view <mask> (uint256);"
fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer)
outputs = fill_mask(code_example)
print(outputs)
```
## Contributors
- [Youwei Huang](https://www.devil.ren)
- [Sen Fang](https://github.com/TomasAndersonFang)
## Sponsors
- [Institute of Intelligent Computing Technology, Suzhou, CAS](http://iict.ac.cn/)
- CAS Mino (中科劢诺)
|